Discrete-time Indefinite LQ Control with State and Control Dependent Noises

M. AIT RAMI ${ }^{1}$, X. CHEN ${ }^{2}$ and X.Y. ZHOU^{3}
${ }^{1}$ Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong (aitm@se.cuhk.edu.hk) ${ }^{2}$ Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong (xchen@se.cuhk.edu.hk) ${ }^{3}$ Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong. (xyzhou@se.cuhk.edu.hk; Tel.: +852-2609-8320; Fax: +852-2603-5505)

Abstract

This paper deals with the discrete-time stochastic LQ problem involving state and control dependent noises, whereas the weighting matrices in the cost function are allowed to be indefinite. In this general setting, it is shown that the well-posedness and the attainability of the LQ problem are equivalent. Moreover, a generalized difference Riccati equation is introduced and it is proved that its solvability is necessary and sufficient for the existence of an optimal control which can be either of state feedback or open-loop form. Furthermore, the set of all optimal controls is identified in terms of the solution to the proposed difference Riccati equation.

Key words: Indefinite stochastic LQ control, Discrete time, Multiplicative noise, Generalized difference Riccati equation, Linear matrix inequality

1. Introduction

Optimal control has found profound applications in a wide range of practical problems. For the systems whose components are perturbed by a Gaussian noise, the most popular problem is known as the linear-quadratic-Gaussian (LQG) problem [5] and its theory has been well established. However, many real systems are subject to stochastic perturbations not necessarily of the Gaussian type. In this paper we are concerned with a general stochastic optimal control of discrete-time linear systems in which the parameters are subject to (non-Gaussian) noises not only additively but also multiplicatively in both the state and the control. The cost function (payoff function) is the expectation of an indefinite quadratic form in the state and the control.

Since it has been introduced by Kalman [9], the classical Riccati equation constitutes the computationally most efficient and the theoretically most important ingredient in the linear-quadratic (LQ) control design methodology. It is wellknown that for the definite LQ problem the optimal control is always unique and has a feedback form with deterministic gain given by the solution to the Riccati equation. For the discrete-time LQ control, there have been some works in literature for problems with control and/or state dependent noises. One early work [11]
deals with a special case, whose system dynamics are described by a difference equation in which both the system matrix and control matrix are multiplied by white, possibly correlated, scalar random sequences. Recently, in [6], the optimal control law is derived for the systems with only control dependent noises. However, in both papers it is assumed that the state weight is nonnegative and the control weight is positive definite in the performance index.

Work on continuous-time stochastic LQ control with indefinite weighting matrices can be found in a series of articles (see, e.g., [1, 2, 7], and Chapter 6 of [15]). One of the interesting applications of this indefinite LQ control is in mathematics finance [10, 16]. For discrete-time LQ problem, the control weighting matrix is not required to be positive definite even in the deterministic case. However, the control weighting matrix can be even more negative when uncertainty factors are involved in the system as will be demonstrated in this paper.

In this paper we introduce a generalized difference Riccati equation (GDRE) involving a matrix pseudo inverse. We show that in general the GDRE solution leads to a family of optimal controls for the indefinite stochastic LQ problem under consideration. Meanwhile we introduce a linear matrix inequality (LMI) condition, and prove that the feasibility of this LMI, the solvability of the GDRE, the well-posedness of the LQ problem, and the attainability of the LQ problem are all equivalent. It should be noted that a special case involving matrix (normal) inverse has been partially studied in [12]. In contrast in this paper we provide a complete solution to the problem.

The remainder of the paper is organized as follows. Section 2 formulates the indefinite stochastic LQ problem and introduces the generalized difference Riccati equation. In Section 3 the optimal state feedback control is studied using the maximum principle approach. Section 4 provides a complete solution to the LQ problem via the dynamic programming approach combined with some algebraic results. The equivalence between the well-posedness, the attainability of the LQ problem, the feasibility of the LMIs and the solvability of the GDRE is established. Section 5 shows that in general the form of an optimal control can be more complex than that of a purely static state feedback control. A characterization of the structure of the optimal controls is given. Section 6 presents an extension of the results when the noises in the system are correlated. A numerical example is reported in Section 7. Finally, Section 8 concludes the paper.

2. Problem formulation and preliminaries

We make use of the following basic notation in this paper: \mathbf{R}^{n} is the real n-dimensional Euclidean space; $\mathbf{R}^{m \times n}$ the set of all $m \times n$ matrices; M^{\prime} the transpose of a matrix M and M^{\dagger} its Moore-Penrose pseudo inverse; and $\operatorname{Tr}(M)$ the trace of a square matrix M. Moreover, $M>0$ (resp. $M \geqslant 0$) means that $M=M^{\prime}$ and M is positive (resp. positive semi-) definite. Finally, $\mathbf{E}[x]$ represents the expectation of a random variable x.

Consider the discrete-time stochastic model

$$
\left\{\begin{array}{l}
x_{i+1}=\left(A_{i}+w_{i}^{x} C_{i}\right) x_{i}+\left(B_{i}+w_{i}^{u} D_{i}\right) u_{i}+w_{i}, i=0, \ldots, N-1, \tag{1}\\
x_{0} \in \mathbf{R}^{n} \text { is a given initial random variable }
\end{array}\right.
$$

where the initial state x_{0}, the noises $\left(w_{i}^{x}, w_{i}^{u}, w_{i}, i=0, \ldots, N-1\right)$, and the control sequence $u_{0}, \ldots, u_{N-1}, u_{i} \in \mathbf{R}^{n}$, are defined on a given probability space $(\Omega, \mathscr{B}, \mathbf{P})$. All the coefficients A_{i}, B_{i}, C_{i} and D_{i} are assumed to be deterministic matrices with appropriate dimensions determined from the context. Without loss of generality, the noises w_{i}^{x} and w_{i}^{u} in the state and control terms are assumed to be scalar random variables.

We assume that the initial condition x_{0} is independent of the noises $w_{i}^{x}, w_{i}^{u}, w_{i}$, $i=0, \ldots, N-1$, and all the noises have zero means:

$$
\mathbf{E}\left[w_{i}^{x}\right]=\mathbf{E}\left[w_{i}^{u}\right]=0, \quad \mathbf{E}\left[w_{i}\right]=0
$$

with the following variances/covariances

$$
\begin{aligned}
& \mathbf{E}\left[\left(w_{i}^{x}\right)^{2}\right]=\mathbf{E}\left[\left(w_{i}^{u}\right)^{2}\right]=1, \quad \mathbf{E}\left[w_{i} w_{i}^{\prime}\right]=V_{i} \\
& \mathbf{E}\left[w_{i}^{x} w_{i}^{u}\right]=\rho_{i}^{x u}, \quad \mathbf{E}\left[w_{i} w_{i}^{x}\right]=0, \quad \mathbf{E}\left[w_{i} w_{i}^{u}\right]=0
\end{aligned}
$$

The cost function associated with the system is

$$
\begin{equation*}
J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right)=\mathbf{E}\left[\sum_{i=0}^{N-1}\left(x_{i}^{\prime} Q_{i} x_{i}+u_{i}^{\prime} R_{i} u_{i}\right)+x_{N}^{\prime} Q_{N} x_{N}\right] \tag{2}
\end{equation*}
$$

where Q_{0}, \ldots, Q_{N} and R_{0}, \ldots, R_{N-1} are symmetric matrices with appropriate dimensions.

In general, a control is defined as a sequence $\left(u_{0}, \ldots, u_{N-1}\right)$ of random variables defined on the probability space $(\Omega, \mathscr{B}, \mathbf{P})$. The admissible control set $\mathcal{U}_{a d}$ is the set of all such controls. The LQ problem under consideration is to find a control that minimizes $J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right)$ over the admissible control set. We also define

$$
\begin{equation*}
V\left(x_{0}\right) \triangleq \inf _{u_{0}, \ldots, u_{N-1}} J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right) \tag{3}
\end{equation*}
$$

Note that the above optimization problem may be ill-posed since the weighting matrices $Q_{0}, \ldots, Q_{N}, R_{0}, \ldots, R_{N-1}$ are possibly indefinite. Therefore, we have the following definition.

DEFINITION 2.1. The LQ problem (1)-(3) is called well-posed if

$$
V\left(x_{0}\right)=\inf _{u_{0}, \ldots, u_{N-1}} J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right)>-\infty
$$

for any random variable x_{0} which is independent of the noises

$$
w_{i}^{x}, w_{i}^{u}, w_{i}, \quad i=0, \ldots, N-1
$$

The LQ problem is called attainable if there exist an admissible control $\left(u_{0}^{*}, \ldots\right.$, $\left.u_{N-1}^{*}\right)$ such that $V\left(x_{0}\right)=J\left(x_{0}, u_{0}^{*}, \ldots, u_{N-1}^{*}\right)$ for any random variable x_{0}. In this case $\left(u_{0}^{*}, \ldots, u_{N-1}^{*}\right)$ is called an optimal control.

It is interesting to note that if the LQ problem is attainable, then we will show that there must be an optimal control that is adaptive, namely, a control sequence u_{0}, \ldots, u_{N-1} where each u_{i} is generated by the history of the state x_{0}, \ldots, x_{i} :

$$
\begin{equation*}
u_{i}=\phi_{i}\left(x_{0}, \ldots, x_{i}\right), \quad i=0, \ldots, N-1 \tag{4}
\end{equation*}
$$

For later use, we recall the pseudo-inverse of a matrix. Let a matrix $M \in \mathbf{R}^{m \times n}$ be given. Then there exists a unique matrix $M^{\dagger} \in \mathbf{R}^{n \times m}$, which is called the MoorePenrose pseudo inverse [13] of M, such that

$$
\left\{\begin{array}{l}
M M^{\dagger} M=M, M^{\dagger} M M^{\dagger}=M^{\dagger} \tag{5}\\
\left(M M^{\dagger}\right)^{\prime}=M M^{\dagger},\left(M^{\dagger} M\right)^{\prime}=M^{\dagger} M
\end{array}\right.
$$

LEMMA 2.1. Let a symmetric matrix S be given. Then
(i) $S^{\dagger}=S^{\dagger^{\prime}}$;
(ii) $S \geqslant 0$ if and only if $S^{\dagger} \geqslant 0$;
(iii) $S S^{\dagger}=S^{\dagger} S$.

Now we introduce the generalized difference Riccati equation.
DEFINITION 2.2. The following constrained difference equation

$$
\left\{\begin{array}{l}
P_{i}=A_{i}^{\prime} P_{i+1} A_{i}-H_{i}^{\prime} G_{i}^{\dagger} H_{i}+Q_{i}+C_{i}^{\prime} P_{i+1} C_{i}, \tag{6}\\
P_{N}=Q_{N}, \\
G_{i} G_{i}^{\dagger} H_{i}-H_{i}=0, \text { and } G_{i} \geqslant 0 \text { for } i=N-1, \ldots, 0,
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
H_{i}=B_{i}^{\prime} P_{i+1} A_{i}+\rho_{i}^{x u} D_{i}^{\prime} P_{i+1} C_{i}, \tag{7}\\
G_{i}=R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i}, \text { for } i=N-1, \ldots, 0
\end{array}\right.
$$

is called a generalized difference Riccati equation (GDRE).

3. State feedback control

In this part, we establish a link between the existence of an optimal control in state feedback form with deterministic gains and the solvability of the GDRE. The idea is to transform the stochastic LQ problem into an equivalent deterministic optimization problem subject to a matrix difference equation constraint involving only the covariance matrices of the state and the gain matrices of the feedback control. Then we apply the deterministic maximum principle [4]. This approach also gives a nice interpretation to the solution of the GDRE, which is nothing but the matrix Lagrangian multiplier (see the proof of Theorem 3.1 below).

LEMMA 3.1. Let matrices L, M and N be given with appropriate sizes. Then the following matrix equation

$$
\begin{equation*}
L X M=N, \tag{8}
\end{equation*}
$$

has a solution X if and only if

$$
\begin{equation*}
L L^{\dagger} N M M^{\dagger}=N \tag{9}
\end{equation*}
$$

Moreover, any solution to (8) is represented by

$$
\begin{equation*}
X=L^{\dagger} N M^{\dagger}+Y-L^{\dagger} L Y M M^{\dagger} \tag{10}
\end{equation*}
$$

where Y is a matrix with an appropriate size.
THEOREM 3.1. If the LQ problem (1)-(3) is attainable by a feedback control law

$$
\begin{equation*}
u_{i}=K_{i} x_{i}, \text { for } i=1, \ldots, N-1, \tag{11}
\end{equation*}
$$

where K_{0}, \ldots, K_{N} are constant deterministic matrices, then the GDRE (6) has a solution.

Proof. The first step is to formulate the LQ problem in terms of the state covariance matrices $X_{i}=E\left[x_{i} x_{i}^{\prime}\right]$ and the gain matrices K_{i}. By a simple calculation it can be seen that the following deterministic optimal control problem is equivalent to the original problem (1)-(3) with a feedback control of the form (11):

$$
\begin{align*}
& \min _{K_{0}, \ldots, K_{N-1} \in \mathbf{R}^{m \times n}} \sum_{i=0}^{N-1} \operatorname{Tr}\left[\left(Q_{i}+K_{i}^{\prime} R_{i} K_{i}\right) X_{i}\right]+\operatorname{Tr}\left(Q_{N} X_{N}\right), \\
& \text { subject to }
\end{align*} \begin{array}{r}
\begin{array}{r}
X_{i+1}=A_{i} X_{i} A_{i}^{\prime}+C_{i} X_{i} C_{i}^{\prime}+B_{i} K_{i} X_{i} K_{i}^{\prime} B_{i}^{\prime}+D_{i} K_{i} X_{i} K_{i}^{\prime} D_{i}^{\prime} \\
\quad+A_{i} X_{i} K_{i}^{\prime} B_{i}^{\prime}+B_{i} K_{i} X_{i} A_{i}^{\prime}+\rho_{i}^{x u} D_{i} K_{i} X_{i} C_{i}^{\prime}+\rho_{i}^{x u} C_{i} X_{i} K_{i}^{\prime} D_{i}^{\prime}+V_{i}, \\
X_{0} \text { is a given symmetric matrix. }
\end{array}
\end{array}
$$

In the above problem the matrices K_{0}, \ldots, K_{N-1} are viewed as the control to be determined. Hence, as in [4] we can apply the matrix Lagrangian multiplier method to solve the above problem. The Lagrangian function is formed as

$$
\mathcal{L}=\sum_{i=0}^{N-1} \mathscr{H}_{i}+\operatorname{Tr}\left(Q_{N} X_{N}\right)
$$

where

$$
\begin{aligned}
\mathscr{H}_{i} \triangleq & \operatorname{Tr}\left[\left(Q_{i}+K_{i}^{\prime} R_{i} K_{i}\right) X_{i}\right] \\
& +\operatorname{Tr}\left[P _ { i + 1 } \left(A_{i} X_{i} A_{i}^{\prime}+C_{i} X_{i} C_{i}^{\prime}+B_{i} K_{i} X_{i} K_{i}^{\prime} B_{i}^{\prime}+D_{i} K_{i} X_{i} K_{i}^{\prime} D_{i}^{\prime}\right.\right. \\
& \left.\left.+A_{i} X_{i} K_{i}^{\prime} B_{i}^{\prime}+B_{i} K_{i} X_{i} A_{i}^{\prime}+\rho_{i}^{x u} D_{i} K_{i} X_{i} C_{i}^{\prime}+\rho_{i}^{x u} C_{i} X_{i} K_{i}^{\prime} D_{i}^{\prime}+V_{i}-X_{i+1}\right)\right],
\end{aligned}
$$

and the matrices P_{0}, \ldots, P_{N-1} are the Lagrangian multipliers. The first-order necessary conditions for optimality [4] are found to be

$$
\left\{\begin{array}{l}
\frac{\partial \mathscr{H}_{i}}{\partial K_{i}}=0, P_{i}=\frac{\partial \mathscr{H}_{i}}{\partial X_{i}}, \text { for } i=1, \ldots, N-1 \\
P_{N}=Q_{N}
\end{array}\right.
$$

The calculation of the above derivatives leads to the following equations

$$
\begin{align*}
&\left(R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i}\right) K_{i}+B_{i}^{\prime} P_{i+1} A_{i}+\rho_{i}^{x u} D_{i}^{\prime} P_{i+1} C_{i}=0 \tag{13}\\
& \\
& P_{i}= Q_{i}+A_{i}^{\prime} P_{i+1} A_{i}+C_{i}^{\prime} P_{i+1} C_{i}+K_{i}^{\prime}\left(R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i}\right) K_{i} \\
&+\left(A_{i}^{\prime} P_{i+1} B_{i}+\rho_{i}^{x u} C_{i}^{\prime} P_{i+1} D_{i}\right) K_{i}+K_{i}^{\prime}\left(B_{i}^{\prime} P_{i+1} A_{i}+\rho_{i}^{x u} D_{i}^{\prime} P_{i+1} C_{i}\right), \tag{14}\\
& P_{N}= Q_{N} .
\end{align*}
$$

Now by using Lemma 3.1 we can see that the existence of a solution K_{0}, \ldots, K_{N-1} to Eq. (13) is equivalent to $G_{i}^{\dagger} G_{i} H_{i}-H_{i}=0$, where

$$
\begin{aligned}
G_{i} & =R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i} \\
H_{i} & =B_{i}^{\prime} P_{i+1} A_{i}+\rho_{i}^{x u} D_{i}^{\prime} P_{i+1} C_{i}
\end{aligned}
$$

and the general solution is given by the following gains

$$
K_{i}=-G_{i}^{\dagger} H_{i}+Y_{i}-G_{i}^{\dagger} G_{i} Y_{i}, \quad Y_{i} \in \mathbf{R}^{m \times n}, \text { for } i=1, \ldots, N-1
$$

Putting the above gains into (14) we obtain

$$
\left\{\begin{array}{l}
P_{i}=A_{i}^{\prime} P_{i+1} A_{i}-H_{i}^{\prime} G^{\dagger} H_{i}+C_{i}^{\prime} P_{i+1} C_{i}+Q_{i} \tag{15}\\
P_{N}=Q_{N} \\
G_{i}^{\dagger} G_{i} H_{i}-H_{i}=0 \\
H_{i}=B_{i}^{\prime} P_{i+1} A_{i}+\rho_{i}^{x u} D_{i}^{\prime} P_{i+1} C_{i} \\
G_{i}=R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i}
\end{array}\right.
$$

Notice that the above equation is exactly the GDRE without any positiveness constraint. The proof will be complete if we show that $G_{i} \geqslant 0, i=0, \ldots, N-1$.

Let us suppose there is G_{l} with an associated negative eigenvalue λ. Denote the unitary eigenvector respect with to λ as v_{λ} (i.e., $v_{\lambda}^{\prime} v_{\lambda}=1$ and $G_{l} v_{\lambda}=\lambda v_{\lambda}$). Let $\delta \neq 0$ be an arbitrary scalar and construct a control sequence as follows

$$
\tilde{u}_{i}= \begin{cases}-G_{i}^{\dagger} H_{i} x_{i}, & i \neq l \\ \delta|\lambda|^{-\frac{1}{2}} v_{\lambda}-G_{i}^{\dagger} H_{i} x_{i}, & i=l\end{cases}
$$

The associated cost is

$$
\begin{aligned}
& J\left(x_{0}, \tilde{u}_{0}, \ldots, \tilde{u}_{N-1}\right) \\
& \quad=\mathbf{E} \sum_{i=0}^{N-1}\left[\left(\tilde{u}_{i}+G_{i}^{\dagger} H_{i} x_{i}\right)^{\prime} G_{i}\left(\tilde{u}_{i}+G_{i}^{\dagger} H_{i} x_{i}\right)\right]+\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right] \\
& \quad=\left(\frac{\delta}{|\lambda|^{\frac{1}{2}}} v_{\lambda}\right)^{\prime} G_{l}\left(\frac{\delta}{|\lambda|^{\frac{1}{2}}} v_{\lambda}\right)+\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right] \\
& \quad=-\delta^{2}+\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right]
\end{aligned}
$$

Obviously, as $\delta \rightarrow \infty, J\left(x_{0}, \tilde{u}_{0}, \ldots, \tilde{u}_{N-1}\right) \rightarrow-\infty$ which contradicts the assumption of the theorem.

4. Well-posedness and attainability

In this section, the connection between the well-posedness and attainability of the LQ problem is examined. It turns out, rather surprisingly, that when the optimal cost value is finite the LQ problem is always achievable by an optimal control. To this end, we first establish the link between the well-posedness and some LMI condition, and then prove that the LMI condition is equivalent to the the solvability of the GDRE as well as to the attainability of the LQ problem.

4.1. AN LMI CONDITION

The following result formulates the well-posedness as the feasibility of some LMI involving unknown symmetric matrices. In fact, here we only show that the proposed LMI condition is sufficient for the well-posedness. The necessity will be shown later.

THEOREM 4.1. The LQ problem (1)-(3) is well-posed if there exist symmetric matrices P_{0}, \ldots, P_{N} satisfying the following LMI condition

$$
\left[\begin{array}{c|c}
A_{i}^{\prime} P_{i+1} A_{i}-P_{i}+C_{i}^{\prime} P_{i+1} C_{i}+Q_{i} & A_{i}^{\prime} P_{i+1} B_{i}+\rho_{i}^{x u} C_{i}^{\prime} P_{i+1} D_{i} \tag{16}\\
\hline B_{i}^{\prime} P_{i+1} A_{i}+\rho_{i}^{x u} D_{i}^{\prime} P_{i+1} C_{i} & R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i}
\end{array}\right] \geqslant 0,
$$

for $i=0, \ldots, N-1$, and $P_{N} \leqslant Q_{N}$.
Proof. Let P_{1}, \ldots, P_{N} satisfy (16). Then by adding the following trivial equality

$$
\begin{equation*}
\sum_{i=0}^{N-1}\left(x_{i+1}^{\prime} P_{i+1} x_{i+1}-x_{i}^{\prime} P_{i} x_{i}\right)=\mathbf{E}\left[x_{N}^{\prime} P_{N} x_{N}-x_{0}^{\prime} P_{0} x_{0}\right] \tag{17}
\end{equation*}
$$

to the cost function

$$
J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right)=\mathbf{E}\left[\sum_{i=0}^{N-1}\left(x_{i}^{\prime} Q_{i} x_{i}+u_{i}^{\prime} R_{i} u_{i}\right)+x_{N}^{\prime} Q_{N} x_{N}\right]
$$

and using the system Eq. (1), we can rewrite the cost function as follows

$$
\begin{aligned}
& J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right) \\
& \left.=\mathbf{E} \sum_{i=0}^{N-1}\left(x_{i}^{\prime} Q_{i} x_{i}+u_{i}^{\prime} R_{i} u_{i}+x_{i+1}^{\prime} P_{i+1} x_{i+1}-x_{i}^{\prime} P_{i} x_{i}\right)\right]+\mathbf{E}\left[x_{N}^{\prime}\left(Q_{N}-P_{N}\right) x_{N}+x_{0}^{\prime} P_{0} x_{0}\right] \\
& =\mathbf{E} \sum_{i=0}^{N-1}\left[x_{i}^{\prime}\left(Q_{i}-P_{i}+A_{i}^{\prime} P_{i+1} A_{i}+C_{i}^{\prime} P_{i+1} C_{i}\right) x_{i}+2 x_{i}^{\prime}\left(A_{i}^{\prime} P_{i+1} B_{i}+\rho_{i}^{x u} C_{i}^{\prime} P_{i+1} D_{i}\right) u_{i}\right. \\
& \left.+u_{i}^{\prime}\left(R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i}\right) u_{i}\right]+\mathbf{E} \sum_{i=0}^{N-1} w_{i}^{\prime} P_{i+1} w_{i} \\
& +\mathbf{E}\left[x_{N}^{\prime}\left(Q_{N}-P_{N}\right) x_{N}+x_{0}^{\prime} P_{0} x_{0}\right] \\
& =\mathbf{E} \sum_{i=0}^{N-1}\left[\begin{array}{c}
x_{i} \\
u_{i}
\end{array}\right]^{\prime}\left[\begin{array}{c|c}
A_{i}^{\prime} P_{i+1} A_{i}+C_{i}^{\prime} P_{i+1} C_{i}+Q_{i}-P_{i} & A_{i}^{\prime} P_{i+1} B_{i}+\rho_{i}^{x u} C_{i}^{\prime} P_{i+1} D_{i} \\
\hline B_{i}^{\prime} P_{i+1} A_{i}+\rho_{i}^{x u} D_{i}^{\prime} P_{i+1} C_{i} & R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
u_{i}
\end{array}\right] \\
& +\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{N}^{\prime}\left(Q_{N}-P_{N}\right) x_{N}+x_{0}^{\prime} P_{0} x_{0}\right]
\end{aligned}
$$

From the above equality we can easily deduce that the cost function is bounded from below by $\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right]+\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)$ and hence the LQ problem (1)-(3) is well-posed.

REMARK 4.1. We have shown in the proof of Theorem 4.1 that any symmetric matrices P_{0}, \ldots, P_{N} satisfying condition (16) provide a lower bound, $\mathbf{E}\left(x_{0}^{\prime} P_{0} x_{0}\right)+$ $\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)$, for the optimal cost value. In the next subsection, we will see that this lower bound becomes the exact optimal cost value when P_{0}, \ldots, P_{N} solve the GDRE.

4.2. EQUIVALENCE BETWEEN WELL-POSEDNESS AND ATTAINABILITY

In the preceding subsection we have shown that if the LMI condition (16) is satisfied then the well-posedness of the LQ problem holds. In this subsection we not only prove the reverse implication but also show that the well-posedness, the attainability, the LMI condition, and the solvability of the GDRE are equivalent to each other.

The following lemmas are useful in our analysis.

LEMMA 4.1 (Extended Schur's lemma [3]). Let be given matrices $F=F^{\prime}, H$ and $G=G^{\prime}$ with appropriate sizes. Then the following conditions are equivalent:
(i) $F-H G^{\dagger} H^{\prime} \geqslant 0, G \geqslant 0$, and $H\left(I-G G^{\dagger}\right)=0$.
(ii) $\left[\begin{array}{cc}F & H \\ H^{\prime} & G\end{array}\right] \geqslant 0$.
(iii) $\left[\begin{array}{cc}G & H^{\prime} \\ H & F\end{array}\right] \geqslant 0$.

LEMMA 4.2. Let be given matrices $G=G^{\prime}$ and H with appropriate sizes. Then the following conditions are equivalent
(i) $H\left(I-G G^{\dagger}\right)=0$.
(ii) $\operatorname{Ker}(G) \subseteq \operatorname{Ker}(H)$.

Proof. The implication (i) \Rightarrow (ii) is trivial. On the other hand, the reverse implication can be shown by using the singular value decomposition of G (see [8]):

$$
G=V\left[\begin{array}{ll}
\Sigma & 0 \\
0 & 0
\end{array}\right] V^{\prime}
$$

where Σ is a nonsingular diagonal matrix and V a matrix such that $V V^{\prime}=I$. Moreover, V is decomposed as $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$ where the columns of the matrix V_{2} form a basis of $\operatorname{ker} G$. Now, one can deduce straightforwardly that G^{+}is given by

$$
G^{+}=V\left[\begin{array}{cc}
\Sigma^{-1} & 0 \\
0 & 0
\end{array}\right] V^{\prime}
$$

A simple calculation yields $H\left(I-G G^{\dagger}\right)=H V_{2} V_{2}^{\prime}$. Since $G V_{2}=0$ we have $H V_{2}=0$ and the proof is complete.

LEMMA 4.3. Let be given matrices $F=F^{\prime}, H$ and $G=G^{\prime}$ with appropriate sizes. Consider the following quadratic form

$$
q(x, u)=\mathbf{E}\left[x^{\prime} F x+2 x^{\prime} H u+u^{\prime} G u\right]
$$

where x and u are random variables defined on a probability space $(\Omega, \mathscr{B}, \mathbf{P})$. Then the following conditions are equivalent:
(i) $\inf _{u} q(x, u)>-\infty$ for any random variable x.
(ii) There exists a symmetric matrix $S=S^{\prime}$ such that $\inf _{u} q(x, u)=\mathbf{E}\left[x^{\prime} S x\right]$, for any random variable x.
(iii) $G \geqslant 0$ and $H\left(I-G G^{\dagger}\right)=0$.
(iv) $G \geqslant 0$ and $\operatorname{Ker}(G) \subseteq \operatorname{Ker}(H)$.
(v) There exists a symmetric matrix $T=T^{\prime}$ such that $\left[\begin{array}{cc}F-T & H \\ H^{\prime} & G\end{array}\right] \geqslant 0$.

Moreover, if any of the above condition holds, then (ii) is satisfied by $S=F-$ $H G^{\dagger} H^{\prime}$. In addition, $S \geqslant T$ for any T satisfying (v). Finally, for any random variable x, the random variable $u^{*}=-G^{\dagger} H^{\prime} x$ is optimal with the following optimal value

$$
q\left(x, u^{*}\right)=\mathbf{E}\left[x^{\prime}\left(F-H G^{\dagger} H^{\prime}\right) x\right]
$$

Proof. The required equivalences are proved by the following loop:

$$
(i) \Rightarrow(i v) \Leftrightarrow(i i i) \Rightarrow(i i) \Rightarrow(v) \Rightarrow(i)
$$

First note that the equivalence (iv) \Leftrightarrow (iii) is nothing than the result given by Lemma 4.2.
$(i) \Rightarrow(i v)$: Assume that there exists v such that $v^{\prime} G v<0$. Then for an arbitrary scalar $\alpha>0$ we have $\lim _{\alpha \rightarrow+\infty} q(x, \alpha v)=-\infty$. By assumption this leads to contradiction. Hence G must be positive.

Suppose now that $\operatorname{Ker}(G) \nsubseteq \operatorname{Ker}(H)$. In other words there exists u such that $G u=0$ and $H u \neq 0$. Take any arbitrary scalar $\alpha>0$ then it is immediate that $\lim _{\alpha \rightarrow+\infty} q(H u,-\alpha u)=-\infty$ which contradicts (i).
$(i i i) \Rightarrow(i i)$: A simple calculation gives

$$
q(x, u)=\mathbf{E}\left[x^{\prime}\left(F-H G^{\dagger} H^{\prime}\right) x+\left(u^{\prime}+x^{\prime} H G^{\dagger}\right) G\left(u+G^{\dagger} H^{\prime} x\right)\right]
$$

Define $S=F-H G^{\dagger} H^{\prime}$, then it is easily seen that $\inf _{u} q(x, u)=\mathbf{E}\left[x^{\prime} S x\right]$ for any random variable x.
$(i i) \Rightarrow(v)$: We have for any random variables x, u :

$$
q(x, u)=\mathbf{E}\left[x^{\prime} F x+2 x^{\prime} H u+u^{\prime} G u\right] \geqslant \mathbf{E}\left[x^{\prime} S x\right]
$$

or equivalently

$$
\mathbf{E}\left[\begin{array}{l}
x \\
u
\end{array}\right]^{\prime}\left[\begin{array}{cc}
F-S & H \\
H^{\prime} & G
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right] \geqslant 0
$$

Thus (v) holds with $T=S$.
$(v) \Rightarrow(i)$: trivial.
The rest of the proof is straightforward.
The following provides a connection between the well-posedness of the LQ problem and the solvability of the GDRE.

THEOREM 4.2. The LQ problem (1)-(3) is well-posed if and only if there exist symmetric matrices P_{0}, \ldots, P_{N} satisfying the GDRE (6). Furthermore the optimal cost is given by

$$
\begin{equation*}
\inf _{u_{0}, \ldots, u_{N-1}} J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right)=\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right] \tag{18}
\end{equation*}
$$

Proof. We prove the first assertion by induction. To this end consider the cost-to-go from l to N

$$
\begin{equation*}
V^{l}\left(x_{l}\right)=\inf _{u_{l}, \ldots, u_{N-1}} \mathbf{E}\left[\sum_{i=l}^{N-1}\left(x_{i}^{\prime} Q_{i} x_{i}+u_{i}^{\prime} R_{i} u_{i}\right)+x_{N}^{\prime} Q_{N} x_{N}\right] . \tag{19}
\end{equation*}
$$

Note that by the stochastic optimality principle when $V^{l_{1}}\left(x_{l_{1}}\right)$ is finite then $V^{l_{2}}\left(x_{l_{2}}\right)$ is also finite for any $l_{1} \leqslant l_{2}$. This fact will be used at each step of the induction: since the LQ problem is assumed to be well-posed at the initial (zero) time, the cost-to-go $V^{l}\left(x_{l}\right)$ is finite at any stage $0 \leqslant l \leqslant N-1$.

Now let us start with $l=N-1$ and define $P_{N}=Q_{N}$. Then by using the system equation (1) and (19) we have

$$
\begin{aligned}
V^{N-1} & \left(x_{N-1}\right)-\operatorname{Tr}\left(V_{N-1} P_{N}\right) \\
& =\inf _{u_{N-1}} \mathbf{E}\left[x_{N-1}^{\prime} Q_{N-1} x_{N-1}+u_{N-1}^{\prime} R_{N-1} u_{N-1}+x_{N}^{\prime} Q_{N} x_{N}\right]-\operatorname{Tr}\left(V_{N-1} P_{N}\right) \\
& =\inf _{u_{N-1}} E\left[x_{N-1}^{\prime}\left(Q_{N-1}+A_{N-1}^{\prime} Q_{N} A_{N-1}+C_{N-1}^{\prime} Q_{N} C_{N-1}\right) x_{N-1}\right. \\
& \quad+2 x_{N-1}^{\prime}\left(A_{N-1}^{\prime} Q_{N} B_{N-1}+\rho_{N-1}^{x u} C_{N-1}^{\prime} Q_{N} D_{N-1}\right) u_{N-1} \\
& \left.\quad+u_{N-1}^{\prime}\left(R_{N}+B_{N-1}^{\prime} Q_{N} B_{N-1}+D_{N-1}^{\prime} Q_{N} D_{N-1}\right) u_{N-1}\right]
\end{aligned}
$$

Since $V^{N-1}\left(x_{N-1}\right)$ is finite, using Lemma 4.3 we can guarantees the existence of a symmetric matrix P_{N-1} such that

$$
V^{N-1}\left(x_{N-1}\right)-\operatorname{Tr}\left(V_{N-1} P_{N}\right)=\mathbf{E}\left[x_{N-1}^{\prime} P_{N-1} x_{N-1}\right]
$$

Also by Lemma 4.3 we have the following conditions which are nothing else than the GDRE (6) for $i=N-1$:

$$
\begin{aligned}
& P_{N-1}=A_{N-1}^{\prime} P_{N} A_{N-1}-H_{N-1}^{\prime} G_{N-1}^{\dagger} H_{N-1}+C_{N-1}^{\prime} P_{i+1} C_{N-1}+Q_{N-1}, \\
& G_{N-1}=R_{N-1}+B_{N-1}^{\prime} P_{N} B_{N-1}+D_{N-1}^{\prime} P_{N} D_{N-1} \geqslant 0, \\
& H_{N-1}=B_{N-1}^{\prime} P_{N} A_{N-1}+\rho_{N-1}^{x u} D_{N-1}^{\prime} P_{N} C_{N-1} .
\end{aligned}
$$

Now suppose that we have found a sequence of symmetric matrices P_{l}, \ldots, P_{N-1} which solve the GDRE (6) for $i=N-1, \ldots, l$, and satisfy

$$
V^{l}\left(x_{l}\right)-\sum_{i=l}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)=\mathbf{E}\left(x_{l}^{\prime} P_{l} x_{l}\right)
$$

Then by the stochastic optimality principle the following is derived:

$$
\begin{aligned}
& V^{l-1}\left(x_{l-1}\right)-\sum_{i=l-1}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right) \\
& \quad=\inf _{u_{l-1}} E\left[x_{l-1}^{\prime} Q_{l-1} x_{l-1}+u_{l-1}^{\prime} R_{l-1} u_{l-1}+V^{l}\left(x_{l}\right)\right]-\sum_{i=l-1}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right) \\
& \quad=\inf _{u_{l-1}} E\left(x_{l-1}^{\prime} Q_{l-1} x_{l-1}+u_{l-1}^{\prime} R_{l-1} u_{l-1}+x_{l}^{\prime} P_{l} x_{l}\right)-\operatorname{Tr}\left(V_{l-1} P_{l}\right) \\
& =\inf _{u_{l-1}} E\left[x_{l-1}^{\prime}\left(Q_{l-1}+A_{l-1}^{\prime} P_{l} A_{l-1}+C_{l-1}^{\prime} P_{l} C_{l-1}\right) x_{l-1}\right. \\
& \quad+2 x_{l-1}^{\prime}\left(A_{l-1}^{\prime} P_{l} B_{l-1}+\rho_{l-1}^{x u} C_{l-1}^{\prime} Q_{l} D_{l-1}\right) u_{l-1} \\
& \left.\quad+u_{l-1}^{\prime}\left(R_{l}+B_{l-1}^{\prime} P_{l} B_{l-1}+D_{l-1}^{\prime} P_{l} D_{l-1}\right) u_{l-1}\right] .
\end{aligned}
$$

As in the preceding we can see that Lemma 4.3 provides the following necessary and sufficient conditions for the finiteness of $V^{l-1}\left(x_{l-1}\right)$:

$$
\left\{\begin{array}{l}
P_{l-1}=A_{l-1}^{\prime} P_{l} A_{l-1}-H_{l-1}^{\prime} G_{l-1}^{\dagger} H_{l-1}+Q_{l-1}+C_{l-1}^{\prime} P_{l} C_{l-1}, \\
G_{l-1}=R_{l-1}+B_{l-1}^{\prime} P_{l} B_{l-1}+D_{l-1}^{\prime} P_{l} D_{l-1} \geqslant 0, \\
G_{l-1} G_{l-1}^{\dagger} H_{l-1}-H_{l-1}=0, \\
H_{l-1}=B_{l-1}^{\prime} P_{l} A_{l-1}+\rho_{l-1}^{x u} D_{l-1}^{\prime} P_{l} C_{l-1} .
\end{array}\right.
$$

In addition,

$$
V^{l-1}\left(x_{l-1}\right)=\sum_{i=l-1}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)+x_{l-1}^{\prime} P_{l-1} x_{l-1} .
$$

These prove the first assertion. Next, noticing that by Lemma 4.1 the solution to the GDRE satisfies also the LMI condition (16) which by Theorem 4.1 implies the well-posedness of the LQ problem.

The main result of this section is given by the following.

THEOREM 4.3. The following are equivalent

(i) The LQ problem is well-posed.
(ii) The LQ problem is attainable.
(iii) The LMI condition (16) is feasible.
(iv) The GDRE (6) is solvable.

Moreover, when any of the above conditions is satisfied the LQ problem is attainable by

$$
\begin{align*}
u_{i}= & -\left[R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i}\right]^{\dagger}\left[B_{i}^{\prime} P_{i+1} A_{i}\right. \tag{20}\\
& \left.+\rho_{i}^{x u} D_{i}^{\prime} P_{i+1} C_{i}\right] x_{i}, \quad i=0, \ldots, N-1,
\end{align*}
$$

where P_{0}, \ldots, P_{N} are solutions to the $\operatorname{GDRE}(6)$.

Proof. By Theorem 4.1 and Theorem 4.2 the equivalences $(i) \Leftrightarrow(i i i) \Leftrightarrow(i v)$ are straightforward. What remains to show is that the LQ problem is attainable by the feedback control law (20). To this end, let P_{1}, \ldots, P_{N} solve the GDRE (6). Then by adding the equality

$$
\sum_{i=0}^{N-1}\left(x_{i+1}^{\prime} P_{i+1} x_{i+1}-x_{i}^{\prime} P_{i} x_{i}\right)=\mathbf{E}\left[x_{N}^{\prime} P_{N} x_{N}-x_{0}^{\prime} P_{0} x_{0}\right]
$$

to the performance index we have

$$
\begin{aligned}
& J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right) \\
& \quad= \\
& \quad \mathbf{E} \sum_{i=0}^{N-1}\left[x_{i}^{\prime}\left(Q_{i}-P_{i}+A_{i}^{\prime} P_{i+1} A_{i}+C_{i}^{\prime} P_{i+1} C_{i}\right) x_{i}\right. \\
& \\
& \quad+2 x_{i}^{\prime}\left(A_{i}^{\prime} P_{i+1} B_{i}+\rho_{i}^{x u} C_{i}^{\prime} P_{i+1} D_{i}\right) u_{i} \\
& \\
& \\
& \left.\quad+u_{i}^{\prime}\left(R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i}\right) u_{i}\right]+\mathbf{E} \sum_{i=0}^{N-1} w_{i}^{\prime} P_{i+1} w_{i}+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right] .
\end{aligned}
$$

A completion of square yields

$$
\begin{aligned}
J\left(x_{0},\right. & \left.u_{0}, \ldots, u_{N-1}\right) \\
& =\mathbf{E} \sum_{i=0}^{N-1}\left[\left(u_{i}+G_{i}^{\dagger} H_{i} x_{i}\right)^{\prime} G_{i}\left(u_{i}+G_{i}^{\dagger} H_{i} x_{i}\right)\right] \\
& +\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right]
\end{aligned}
$$

which shows that the optimal value equals $\sum_{i=0}^{N-1} \mathbf{T r}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right]$ and it is attainable by the feedback $u_{i}=-G_{i}^{\dagger} H_{i} x_{i}$ for $i=1, \ldots, N-1$.

REMARK 4.2. Suppose that there exist Q_{0}, \ldots, Q_{N} and R_{0}, \ldots, R_{N-1} such that the LQ problem is attainable. Then it is easily verified that for every $\tilde{Q}_{0} \geqslant$ $Q_{0}, \ldots, \tilde{Q}_{N} \geqslant Q_{N}$ and $\tilde{R}_{0} \geqslant R_{0}, \ldots, \tilde{R}_{N-1} \geqslant R_{N-1}$, the LMI condition (16) is also satisfied. Therefore, any of the statements in Theorem 4.3 holds for every $\tilde{Q}_{0} \geqslant Q_{0}, \ldots, \tilde{Q}_{N} \geqslant Q_{N}$ and $\tilde{R}_{0} \geqslant R_{0}, \ldots, \tilde{R}_{N-1} \geqslant R_{N-1}$.

REMARK 4.3. It should be noted that the GDRE solution is also the unique solution to the following semidefinite programming (SDP) [14]

$$
\min _{P_{0}, \ldots, P_{N-1}}-\operatorname{Tr} \sum_{0}^{N} P_{i} \quad \text { subject to the LMI condition (16). }
$$

This fact is an immediate consequence of our previous results. However, it seems that solving the above SDP is computationally unfavorable since the GDRE solution can be found by a simple backward calculation.

5. Optimal synthesis via GDRE

It is well-known that for a definite LQ problem the optimal control is always unique and has a feedback form with deterministic gain given by the solution to the difference Riccati equation. For the indefinite case this is no longer true. In the following we provide a complete characterization of all optimal controls. Precisely, we show that any optimal control can be expressed in terms of the solution to the GDRE with two degrees of freedom. In general the optimal control involves a feedback form with random gains and an additional random term.

The following is the main result of this section.
THEOREM 5.1. Assume that the GDRE (6) admits a solution. Then the set of all optimal controls is determined by the following (parameterized by Y_{i}, z_{i}):

$$
\begin{equation*}
u_{i}^{\left(Y_{i}, z_{i}\right)}=-\left(G_{i}^{\dagger} H_{i}+Y_{i}-G_{i}^{\dagger} G_{i} Y_{i}\right) x_{i}+z_{i}-G_{i}^{\dagger} G_{i} z_{i} \tag{21}
\end{equation*}
$$

where $Y_{i} \in \mathbf{R}^{m \times n}$ and $z_{i} \in \mathbf{R}^{m}$ are arbitrary random variables defined on the probability space $(\Omega, \mathscr{B}, \mathbf{P})$. Furthermore, the optimal cost value is uniquely given by

$$
\begin{equation*}
\inf _{u_{0}, \ldots, u_{N-1}} J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right)=\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right] \tag{22}
\end{equation*}
$$

where P_{0}, \ldots, P_{N-1} solve the GDRE.
Proof. We show first that any control law of the form (21) is optimal. Let P_{0}, \ldots, P_{N-1} solve GDRE (6). By the same calculation used in our previous proofs the cost function can be expressed as follows

$$
\begin{aligned}
& J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right) \\
& =\mathbf{E} \sum_{i=0}^{N-1}\left(x_{i}^{\prime} Q_{i} x_{i}+u_{i}^{\prime} R_{i} u_{i}+x_{i+1}^{\prime} P_{i+1} x_{i+1}-x_{i}^{\prime} P_{i} x_{i}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right] \\
& =\mathbf{E}\left[\sum_{i=0}^{N-1} x_{i}^{\prime}\left(Q_{i}-P_{i}+A_{i}^{\prime} P_{i+1} A_{i}+C_{i}^{\prime} P_{i+1} C_{i}\right) x_{i}+2 x_{i}^{\prime}\left(A_{i}^{\prime} P_{i+1} B_{i}+\rho_{i}^{x u} C_{i}^{\prime} P_{i+1} D_{i}\right) u_{i}\right. \\
& \left.\quad+u_{i}^{\prime}\left(R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i}\right) u_{i}\right]+\mathbf{E} \sum_{i=0}^{N-1} w_{i}^{\prime} P_{i+1} w_{i}+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right], \\
& =\mathbf{E} \sum_{i=0}^{N-1}\left[x_{i}^{\prime} H_{i}^{\prime} G_{i}^{\dagger} H_{i} x_{i}+2 x_{i}^{\prime} H_{i}^{\prime} u_{i}+u_{i}^{\prime} G_{i} u_{i}\right]+\sum_{i=0}^{N-1} \mathbf{T r}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right] .
\end{aligned}
$$

Denote $M_{i}^{1}=-\left(Y_{i}-G_{i}^{\dagger} G_{i} Y_{i}\right)$ and $M_{i}^{2}=-\left(z_{i}-G_{i}^{\dagger} G_{i} z_{i}\right)$. Then we have

$$
\begin{equation*}
G_{i} M_{i}^{1}=0, \quad G_{i} M_{i}^{2}=0 \tag{23}
\end{equation*}
$$

Thus, using the last expression of $J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right)$ given above and the equation (23) we have the following

$$
\begin{align*}
& J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right) \\
& =\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right] \\
& \quad+\mathbf{E} \sum_{i=0}^{N-1}\left(u_{i}+\left(G_{i}^{\dagger} H_{i}+M_{i}^{1}\right) x_{i}+M_{i}^{2}\right)^{\prime} G_{i}\left(u_{i}+\left(G_{i}^{\dagger} H_{i}+M_{i}^{1}\right) x_{i}+M_{i}^{2}\right) . \tag{24}
\end{align*}
$$

Since by definition $G_{i} \geqslant 0$ for $i=1, \ldots, N-1$, we conclude that the control sequence $u_{i}=-\left[\left(G_{i}^{\dagger} H_{i}+M_{i}^{1}\right) x_{i}+M_{i}^{2}\right], i=0, \ldots, N-1$, minimizes J with the optimal value given by (22).

Next, consider any control sequence $\bar{u}_{0}, \ldots, \bar{u}_{N-1}$ which minimizes the cost function J. Then we have

$$
\begin{aligned}
& J\left(x_{0}, \bar{u}_{0}, \ldots, \bar{u}_{N-1}\right) \\
& \quad=\mathbf{E} \sum_{i=0}^{N-1}\left[\left(\bar{u}_{i}+G_{i}^{\dagger} H_{i} x_{i}\right)^{\prime} G_{i}\left(\bar{u}_{i}+G_{i}^{\dagger} H_{i} x_{i}\right)\right]+\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right] \\
& \quad=\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}\right] .
\end{aligned}
$$

Necessarily, the above equality implies

$$
\mathbf{E} \sum_{i=0}^{N-1}\left[\left(\bar{u}_{i}+G_{i}^{\dagger} H_{i} x_{i}\right)^{\prime} G_{i}\left(\bar{u}_{i}+G_{i}^{\dagger} H_{i} x_{i}\right)\right]=0
$$

As $G_{i} \geqslant 0$ for $i=1, \ldots, N-1$, we have the following equivalent condition

$$
G_{i}\left(\bar{u}_{i}+G_{i}^{\dagger} H_{i} x_{i}\right)=0, \quad i=1, \ldots, N-1
$$

Hence each \bar{u}_{i} solves the following equation

$$
G_{i} \bar{u}_{i}+G_{i} G_{i}^{\dagger} H_{i} x_{i}=0
$$

Using Lemma 3.1 with $L=G_{i}, M=I, N=-G_{i} G_{i}^{\dagger} H_{i} x_{i}$, we have the following solution

$$
\bar{u}_{i}=-G_{i}^{\dagger} H_{i} x_{i}+z_{i}-G_{i}^{\dagger} G_{i} z_{i}
$$

Thus \bar{u}_{i} is represented by (21).
In the following we present some special cases of the previous result. The first one is when the LQ problem is attainable by a unique optimal control. The second one is that the cost function has a constant value with any control sequence.
COROLLARY 5.1. The LQ problem is uniquely solvable if and only if $G_{i}>0$, for $i=0, \ldots, N-1$. Moreover, the unique optimal control is given by

$$
u_{i}=-G_{i}^{-1} H_{i} x_{i}, \quad i=0, \ldots, N-1
$$

COROLLARY 5.2. If $G_{i}=0, i=0, \ldots, N-1$, then any admissible control is optimal and the GDRE reduces to the following linear system:

$$
\left\{\begin{array}{l}
P_{i}-A_{i}^{\prime} P_{i+1} A_{i}-C_{i}^{\prime} P_{i+1} C_{i}-Q_{i}=0 \tag{25}\\
P_{N}=Q_{N} \\
B_{i}^{\prime} P_{i+1} A_{i}+\rho_{i}^{x u} D_{i}^{\prime} P_{i+1} C_{i}=0, \\
R_{i}+B_{i}^{\prime} P_{i+1} B_{i}+D_{i}^{\prime} P_{i+1} D_{i}=0, \text { for } i=0, \ldots, N-1
\end{array}\right.
$$

6. Extensions

So far we have assumed that $\mathbf{E}\left[w_{i} w_{i}^{x}\right]=\mathbf{E}\left[w_{i} w_{i}^{u}\right]=0$. Here we show how to treat the case when the noises w_{i}^{x} and w_{i}^{u} are correlated with the additive noise w_{i}. In this situation, the optimal control requires an additional input term.

We provide in the following the optimal solution to the LQ problem in the case when $\mathbf{E}\left[w_{i} w_{i}^{x}\right]=\rho_{i}^{x} \neq 0$, and $\mathbf{E}\left[w_{i} w_{i}^{u}\right]=\rho_{i}^{u} \neq 0$.
THEOREM 6.1. Assume that the GDRE [6] is solvable. Then the LQ problem (1)-(3) with $\rho_{i}^{x} \neq 0, \rho_{i}^{u} \neq 0$ is attainable by an optimal control in the following form:

$$
\begin{equation*}
\bar{u}_{i}=-G_{i}^{\dagger}\left(H_{i} x_{i}+\psi_{i}\right), \quad i=0, \ldots, N-1 \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{i}=D_{i}^{\prime} P_{i+1} \rho_{i}^{u}+B_{i}^{\prime} \phi_{i+1} \tag{27}
\end{equation*}
$$

P_{0}, \ldots, P_{N-1} solve GDRE (6) $\left(G_{i}, H_{i}\right.$ are defined as in (6)), and ϕ_{i} satisfies the following equation

$$
\left\{\begin{array}{l}
\phi_{i}=\left(A_{i}^{\prime}-H_{i}^{\prime} G_{i}^{\dagger} B_{i}^{\prime}\right) \phi_{i+1}+C_{i}^{\prime} P_{i+1} \rho_{i}^{x}-H_{i}^{\prime} G_{i}^{\dagger} D_{i}^{\prime} \rho_{i}^{u} \tag{28}\\
G_{i} G_{i}^{\dagger}\left(D_{i}^{\prime} P_{i+1} \rho_{i}^{u}+B_{i}^{\prime} \phi_{i+1}\right)-D_{i}^{\prime} P_{i+1} \rho_{i}^{u}+B_{i}^{\prime} \phi_{i+1}=0 \\
\phi_{N}=0
\end{array}\right.
$$

or equivalently

$$
\left\{\begin{array}{l}
\phi_{i}=A_{i}^{\prime} \phi_{i+1}+C_{i}^{\prime} P_{i+1} \rho_{i}^{x}-H_{i}^{\prime} G_{i}^{\dagger} \psi_{i} \tag{29}\\
G_{i} G_{i}^{\dagger} \psi_{i}-\psi_{i}=0 \\
\phi_{N}=0
\end{array}\right.
$$

Moreover, the optimal cost value is given by

$$
\begin{align*}
\inf _{u_{0}, \ldots, N-1} J\left(x_{0}, u_{0}, \ldots, u_{N-1}\right)= & \sum_{i=0}^{N-1}\left[\operatorname{Tr}\left(V_{i} P_{i+1}\right)-\psi_{i}^{\prime} G_{i}^{\dagger} \psi_{i}\right] \tag{30}\\
& +\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}+2 x_{0}^{\prime} \phi_{0}\right] .
\end{align*}
$$

Proof. First note that

$$
\mathbf{E}\left(x_{i+1}\right)=\mathbf{E}\left(A_{i} x_{i}+B_{i} u_{i}\right) \text { and } \mathbf{E}\left[-x_{0}^{\prime} \phi_{0}\right]=\mathbf{E} \sum_{i=0}^{N-1}\left(x_{i+1}^{\prime} \phi_{i+1}-x_{i}^{\prime} \phi_{i}\right) .
$$

By (1),(6),(17) and (29), we have

$$
\begin{aligned}
\mathbf{E}\left[x_{N}^{\prime} P_{N} x_{N}-x_{0}^{\prime} P_{0} x_{0}\right]= & \mathbf{E} \sum_{i=0}^{N-1}\left[x_{i}^{\prime}\left(H_{i}^{\prime} G_{i}^{\dagger} H_{i}-Q_{i}\right) x_{i}+u_{i}^{\prime}\left(G_{i}-R_{i}\right) u_{i}\right. \\
& \left.+2 x_{i}^{\prime} H_{i}^{\prime} u_{i}+2 x_{i}^{\prime} C_{i}^{\prime} P_{i+1} \rho_{i}^{x}+2 u_{i}^{\prime} D_{i}^{\prime} P_{i+1} \rho_{i}^{u}\right] \\
& +\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)
\end{aligned}
$$

and

$$
\mathbf{E}\left[-x_{0}^{\prime} \phi_{0}\right]=\mathbf{E} \sum_{i=0}^{N-1}\left[x_{i}^{\prime}\left(H_{i}^{\prime} G_{i}^{\dagger} \psi_{i}-C_{i}^{\prime} P_{i+1} \rho_{i}^{x}\right)+u_{i}^{\prime} B_{i}^{\prime} \phi_{i+1}\right]
$$

Hence, we have the following

$$
\begin{aligned}
J\left(x_{0},\right. & \left.u_{0}, \ldots, N-1\right)-\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}-2 x_{0}^{\prime} \phi_{0}\right] \\
& =\mathbf{E} \sum_{i=0}^{N-1}\left[x_{i}^{\prime}\left(H_{i}^{\prime} G_{i}^{\dagger} H_{i}\right) x_{i}+u_{i}^{\prime} G_{i} u_{i}+2 x_{i}^{\prime} H_{i}^{\prime} u_{i}+2 x_{i}^{\prime} H_{i}^{\prime} G_{i}^{\dagger} \psi_{i}+2 u_{i}^{\prime} \psi_{i}\right] \\
& +\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right) \\
= & \mathbf{E} \sum_{i=0}^{N-1}\left[\left(u_{i}+G_{i}^{\dagger}\left(H_{i} x_{i}+\psi_{i}\right)\right)^{\prime} G_{i}\left(u_{i}+G_{i}^{\dagger}\left(H_{i} x_{i}+\psi_{i}\right)\right)-\psi_{i}^{\prime} G_{i}^{\dagger} \psi_{i}\right] \\
& +\sum_{i=0}^{N-1} \operatorname{Tr}\left(V_{i} P_{i+1}\right)
\end{aligned}
$$

Finally, using (26) we see that

$$
J\left(x_{0}, \bar{u}_{0}, \ldots, \bar{u}_{N-1}\right)=\sum_{i=0}^{N-1}\left[\operatorname{Tr}\left(V_{i} P_{i+1}\right)-\psi_{i}^{\prime} G_{i}^{\dagger} \psi_{i}\right]+\mathbf{E}\left[x_{0}^{\prime} P_{0} x_{0}+2 \phi_{0}^{\prime} x_{0}\right]
$$

Therefore $\bar{u}_{0}, \ldots, \bar{u}_{N-1}$ is an optimal control.

REMARK 6.1. As in Theorem 5.1, the general form of the optimal control law involves two degrees of freedom Y_{i}, z_{i}. The set of optimal controls is given by

$$
\begin{equation*}
\bar{u}_{i}^{\left(Y_{i}, z_{i}\right)}=-\left(G_{i}^{\dagger} H_{i}+Y_{i}-G_{i}^{\dagger} G_{i} Y_{i}\right) x_{i}-G_{i}^{\dagger} \psi_{i}+z_{i}-G_{i}^{\dagger} G_{i} z_{i} \tag{31}
\end{equation*}
$$

where $Y_{i} \in \mathbf{R}^{m \times n}$ and $z_{i} \in \mathbf{R}^{m}$ are arbitrary random variables.

7. A numerical example

The theoretical results obtained show that the solvability of GDRE (6) is equivalent to the existence of optimal solution to the LQ problem (1)-(2). Moreover, based on GDRE (6), we can obtain an optimal control with limited calculation. The following numerical example illustrates the procedure of finding the optimal solution.

Consider a three-stage system (1)-(2) with initial state

$$
x_{1}=\binom{0.4692}{-0.2591} .
$$

The coefficients of the dynamics are as follows

$$
\begin{aligned}
A_{1} & =\left(\begin{array}{cc}
0.9501 & -0.6068 \\
0.2311 & 0.4860
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
0.8913 & -0.4565 \\
0.7621 & 0.0185
\end{array}\right) \\
A_{3} & =\left(\begin{array}{cc}
0.8214 & -0.6154 \\
0.4447 & 0.7919
\end{array}\right), \\
B_{1} & =\binom{0.6979}{0.3784}, \quad B_{2}=\binom{0.8600}{0.8537}, \quad B_{3}=\binom{0.5936}{0.4966} \\
C_{1} & =\left(\begin{array}{cc}
-0.5681 & 0.7027 \\
0.3704 & 0.5466
\end{array}\right), \quad C_{2}=\left(\begin{array}{cc}
-0.4449 & 0.6213 \\
0.6946 & 0.7948
\end{array}\right) \\
C_{3} & =\left(\begin{array}{cc}
-0.9568 & 0.8801 \\
0.5226 & 0.1730
\end{array}\right), \\
D_{1} & =\binom{0.8998}{-0.8216}, \quad D_{2}=\binom{0.6449}{-0.8180}, \quad D_{3}=\binom{0.6602}{-0.3420}
\end{aligned}
$$

The parameters on the random factors are

$$
\begin{aligned}
& \rho_{1}^{x u}=-0.2742, \quad \rho_{2}^{x u}=0.5690, \quad \rho_{3}^{x u}=0.5803 \\
& V_{1}=\left(\begin{array}{ll}
0.9883 & 0.5031 \\
0.5031 & 0.5155
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
0.3340 & -0.3294 \\
-0.3294 & 0.5798
\end{array}\right),
\end{aligned}
$$

$$
V_{3}=\left(\begin{array}{ll}
0.5678 & 0.4267 \\
0.4267 & 0.6029
\end{array}\right)
$$

Finally, the state and control weights are the following

$$
\begin{aligned}
Q_{1} & =\left(\begin{array}{cc}
-0.5000 & 0 \\
0 & 0.2000
\end{array}\right), \quad Q_{2}=\left(\begin{array}{cc}
-0.6000 & 0 \\
0 & -0.6000
\end{array}\right), \\
Q_{3} & =\left(\begin{array}{cc}
0.8000 & 0 \\
0 & 0.5000
\end{array}\right), \quad Q_{4}=\left(\begin{array}{cc}
1.0000 & 0 \\
0 & 0.5000
\end{array}\right), \\
R_{1} & =-0.9797, \quad R_{2}=-0.4072, \quad R_{3}=-0.2523 .
\end{aligned}
$$

Note that in this example, all the control weights R_{i} are negative, while some of the state weights Q_{i} are indefinite. We solve the corresponding GDRE of this problem stage by stage and construct the optimal feedback control law K_{i}. Finally, we can calculate the optimal cost value.

Specifically, for GDRE (6), the terminal condition is $P_{4}=Q_{4}$.
Stage 3:
$G_{3}=R_{3}+B_{3}^{\prime} P_{4} B_{3}+D_{3}^{\prime} P_{4} D_{3}=0.7176$,
$G_{3}^{\dagger}=G_{3}^{-1}=1.3935$,
$H_{3}=(0.1795,0.1514)$,
$P_{3}=\left(\begin{array}{cc}2.5808 & -1.1643 \\ -1.1643 & 1.9500\end{array}\right)$.
The optimal feedback control gain is $K_{3}=-G_{3}^{\dagger} H_{3}=(-0.2502,-0.2109)$. Stage 2:

$$
\begin{aligned}
& G_{2}=4.8196 \\
& G_{2}^{\dagger}=G_{2}^{-1}=0.2075 \\
& H_{2}=(0.0085,-0.6830) \\
& P_{2}=\left(\begin{array}{cc}
3.1721 & -0.3630 \\
-0.3630 & 0.9395
\end{array}\right)
\end{aligned}
$$

The optimal feedback control gain is $K_{2}=(-0.0018,0.1417)$.
Stage 1:

$$
\begin{aligned}
& G_{1}=4.2472 \\
& G_{1}^{\dagger}=G_{1}^{-1}=0.2355 \\
& H_{1}=(2.5990,-1.6532) \\
& P_{1}=\left(\begin{array}{cc}
1.9692 & -1.8864 \\
-1.8864 & 2.7290
\end{array}\right)
\end{aligned}
$$

The optimal feedback control gain is $K_{1}=(-0.6119,0.3892)$. Finally, the optimal cost value is

$$
J\left(x_{1}\right)=x_{1}^{\prime} P_{1} x_{1}+\sum_{i=1}^{3} \mathbf{T} r\left(V_{i} P_{i+1}\right)=7.9585
$$

8. Conclusion

In this paper we have investigated the discrete-time stochastic indefinite LQ problem in a general setting, allowing the weighting matrices in the cost function to be indefinite. The underlying system is subject to external perturbations which affect multiplicatively and additively the parameters of the model in both the state and the controls. We have introduced a new Riccati-type equation which plays a central role in solving the indefinite LQ problem. At the same time we have introduced an LMI condition which turns out to be necessary and sufficient for the solvability of our the Riccati equation. More precisely, we have shown that the well-posedness, the attainability of the LQ problem, the feasibility of the LMI and the solvability of the Riccati equation are equivalent to each other. Also, we have provided a complete characterization of all optimal controls.

Acknowledgement

This research was partially supported by the RGC Earmarked Grants CUHK 4435/ 99E and CUHK 4175/00E.

References

1. M. Ait Rami, X. Chen, J.B. Moore, and X.Y. Zhou. Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls. IEEE Trans. Autom. Contr. AC-46 (2001), 428-440.
2. M. Ait Rami and X. Y. Zhou. Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic control. IEEE Trans. Autom. Contr. AC-45 (2000), 1131-1143.
3. A. Albert. Conditions for positive and nonnegative definiteness in terms of pseudo-inverse. SIAM J. Appl. Math. 17 (1969), 434-440.
4. M. Athans. The matrix minimum principle. Inform. and Contr. 11 (1968), 592-606.
5. M. Athans. Special issues on linear-quadratic-Gaussian problem, IEEE Trans. Autom. Contr. AC-16 (1971), 527-869.
6. A. Beghi and D. D'Alessandro. Discrete-time optimal control with control-dependent noise and generalized Riccati difference equations. Automatica 34(8) (1998), 1031-1034.
7. S. Chen, X. Li and X.Y. Zhou. Stochastic linear quadratic regulators with indefinite control weight costs. SIAM J. Contr. Optim. 36 (1998), 1685-1702.
8. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1990.
9. R. E. Kalman. Contribution to the theory of optimal control, Bol. Soc. Mat. Mex. 5 (1960), 102-119.
10. M. Kohlmann and X.Y. Zhou. Relations hip between backward stochastic differential equations and stochastic controls: a linear-quadratic approach. SIAM J. Contr. Optim. 38 (2000), 13921407.
11. R.T. Ku and M. Athans. Further results on the uncertainty threshold principle. IEEE Trans. Autom. Contr. AC-22 (1977), 866-868.
12. J.B. Moore, X.Y. Zhou and A.E.B. Lim. Discrete time LQG controls with control dependent noise. Syst. Contr. Lett. 36 (1999), 199-206.
13. R. Penrose. A generalized inverse of matrices. Proc. Cambridge Philos. Soc. 52 (1955), 17-19.
14. L. Vandenerghe and S. Boyd. Semidefinite programming. SIAM Rev. 38 (1996), 49-95.
15. J. Yong and X.Y. Zhou. Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, Berlin, 1999.
16. X.Y. Zhou and D. Li. Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42 (2000), 19-33.
