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Abstract. This paper deals with the discrete-time stochastic LQ problem involving state and control
dependent noises, whereas the weighting matrices in the cost function are allowed to be indefinite. In
this general setting, it is shown that the well-posedness and the attainability of the LQ problem are
equivalent. Moreover, a generalized difference Riccati equation is introduced and it is proved that its
solvability is necessary and sufficient for the existence of an optimal control which can be either of
state feedback or open-loop form. Furthermore, the set of all optimal controls is identified in terms
of the solution to the proposed difference Riccati equation.

Key words: Indefinite stochastic LQ control, Discrete time, Multiplicative noise, Generalized differ-
ence Riccati equation, Linear matrix inequality

1. Introduction

Optimal control has found profound applications in a wide range of practical prob-
lems. For the systems whose components are perturbed by a Gaussian noise, the
most popular problem is known as the linear–quadratic–Gaussian (LQG) prob-
lem [5] and its theory has been well established. However, many real systems are
subject to stochastic perturbations not necessarily of the Gaussian type. In this
paper we are concerned with a general stochastic optimal control of discrete-time
linear systems in which the parameters are subject to (non-Gaussian) noises not
only additively but also multiplicatively in both the state and the control. The cost
function (payoff function) is the expectation of an indefinite quadratic form in the
state and the control.

Since it has been introduced by Kalman [9], the classical Riccati equation con-
stitutes the computationally most efficient and the theoretically most important
ingredient in the linear–quadratic (LQ) control design methodology. It is well-
known that for the definite LQ problem the optimal control is always unique and
has a feedback form with deterministic gain given by the solution to the Riccati
equation. For the discrete-time LQ control, there have been some works in literat-
ure for problems with control and/or state dependent noises. One early work [11]
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deals with a special case, whose system dynamics are described by a difference
equation in which both the system matrix and control matrix are multiplied by
white, possibly correlated, scalar random sequences. Recently, in [6], the optimal
control law is derived for the systems with only control dependent noises. However,
in both papers it is assumed that the state weight is nonnegative and the control
weight is positive definite in the performance index.

Work on continuous-time stochastic LQ control with indefinite
weighting matrices can be found in a series of articles (see, e.g., [1, 2, 7], and
Chapter 6 of [15]). One of the interesting applications of this indefinite LQ con-
trol is in mathematics finance [10, 16]. For discrete-time LQ problem, the control
weighting matrix is not required to be positive definite even in the deterministic
case. However, the control weighting matrix can be even more negative when
uncertainty factors are involved in the system as will be demonstrated in this paper.

In this paper we introduce a generalized difference Riccati equation (GDRE)
involving a matrix pseudo inverse. We show that in general the GDRE solution
leads to a family of optimal controls for the indefinite stochastic LQ problem
under consideration. Meanwhile we introduce a linear matrix inequality (LMI)
condition, and prove that the feasibility of this LMI, the solvability of the GDRE,
the well-posedness of the LQ problem, and the attainability of the LQ problem
are all equivalent. It should be noted that a special case involving matrix (normal)
inverse has been partially studied in [12]. In contrast in this paper we provide a
complete solution to the problem.

The remainder of the paper is organized as follows. Section 2 formulates the
indefinite stochastic LQ problem and introduces the generalized difference Ric-
cati equation. In Section 3 the optimal state feedback control is studied using the
maximum principle approach. Section 4 provides a complete solution to the LQ
problem via the dynamic programming approach combined with some algebraic
results. The equivalence between the well-posedness, the attainability of the LQ
problem, the feasibility of the LMIs and the solvability of the GDRE is estab-
lished. Section 5 shows that in general the form of an optimal control can be more
complex than that of a purely static state feedback control. A characterization of
the structure of the optimal controls is given. Section 6 presents an extension of
the results when the noises in the system are correlated. A numerical example is
reported in Section 7. Finally, Section 8 concludes the paper.

2. Problem formulation and preliminaries

We make use of the following basic notation in this paper: Rn is the real n-dimen-
sional Euclidean space; Rm×n the set of all m × n matrices; M ′ the transpose of
a matrix M and M† its Moore-Penrose pseudo inverse; and Tr(M) the trace of a
square matrix M. Moreover, M > 0 (resp. M � 0) means that M = M ′ and M is
positive (resp. positive semi-) definite. Finally, E[x] represents the expectation of
a random variable x.
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Consider the discrete-time stochastic model{
xi+1 = (Ai + wxi Ci)xi + (Bi + wui Di)ui + wi, i = 0, . . . , N − 1,

x0 ∈ Rn is a given initial random variable ,
(1)

where the initial state x0, the noises (wxi , w
u
i , wi, i = 0, . . . , N − 1), and the

control sequence u0, . . . , uN−1, ui ∈ Rn, are defined on a given probability space
(�,B,P). All the coefficients Ai , Bi , Ci and Di are assumed to be deterministic
matrices with appropriate dimensions determined from the context. Without loss
of generality, the noises wxi and wui in the state and control terms are assumed to
be scalar random variables.

We assume that the initial condition x0 is independent of the noises wxi , w
u
i , wi ,

i = 0, . . . , N − 1, and all the noises have zero means:

E[wxi ] = E[wui ] = 0, E[wi] = 0,

with the following variances/covariances

E[(wxi )2] = E[(wui )2] = 1, E[wiw′
i] = Vi,

E[wxi wui ] = ρxui , E[wiwxi ] = 0, E[wiwui ] = 0.

The cost function associated with the system is

J (x0, u0, . . . , uN−1) = E

[
N−1∑
i=0

(x′
iQixi + u′

iRiui)+ x′
NQNxN

]
, (2)

where Q0, . . . ,QN and R0, . . . , RN−1 are symmetric matrices with appropriate
dimensions.

In general, a control is defined as a sequence (u0, . . . , uN−1) of random vari-
ables defined on the probability space (�,B,P). The admissible control set Uad is
the set of all such controls. The LQ problem under consideration is to find a control
that minimizes J (x0, u0, . . . , uN−1) over the admissible control set. We also define

V (x0)
�= inf
u0,... ,uN−1

J (x0, u0, . . . , uN−1). (3)

Note that the above optimization problem may be ill-posed since the weighting
matrices Q0, . . . ,QN , R0, . . . , RN−1 are possibly indefinite. Therefore, we have
the following definition.

DEFINITION 2.1. The LQ problem (1)–(3) is called well-posed if

V (x0) = inf
u0,... ,uN−1

J (x0, u0, . . . , uN−1) > −∞,

for any random variable x0 which is independent of the noises

wxi , w
u
i , wi, i = 0, . . . , N − 1.
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The LQ problem is called attainable if there exist an admissible control (u∗
0, . . . ,

u∗
N−1) such that V (x0) = J (x0, u

∗
0, . . . , u

∗
N−1) for any random variable x0. In this

case (u∗
0, . . . , u

∗
N−1) is called an optimal control.

It is interesting to note that if the LQ problem is attainable, then we will show
that there must be an optimal control that is adaptive, namely, a control sequence
u0, . . . , uN−1 where each ui is generated by the history of the state x0, . . . , xi :

ui = φi(x0, . . . , xi), i = 0, . . . , N − 1. (4)

For later use, we recall the pseudo-inverse of a matrix. Let a matrix M ∈ Rm×n
be given. Then there exists a unique matrixM† ∈ Rn×m, which is called the Moore-
Penrose pseudo inverse [13] of M, such that{

MM†M = M,M†MM† = M†,

(MM†)′ = MM†, (M†M)′ = M†M.
(5)

LEMMA 2.1. Let a symmetric matrix S be given. Then
(i) S† = S†′

;
(ii) S � 0 if and only if S† � 0;
(iii) SS† = S†S.

Now we introduce the generalized difference Riccati equation.

DEFINITION 2.2. The following constrained difference equation

Pi = A′

iPi+1Ai −H ′
iG

†
i Hi +Qi + C ′

iPi+1Ci,

PN = QN,

GiG
†
i Hi −Hi = 0, and Gi � 0 for i = N − 1, . . . , 0,

(6)

where{
Hi = B ′

iPi+1Ai + ρxui D
′
iPi+1Ci,

Gi = Ri + B ′
iPi+1Bi +D′

iPi+1Di, for i = N − 1, . . . , 0,
(7)

is called a generalized difference Riccati equation (GDRE).

3. State feedback control

In this part, we establish a link between the existence of an optimal control in
state feedback form with deterministic gains and the solvability of the GDRE. The
idea is to transform the stochastic LQ problem into an equivalent deterministic
optimization problem subject to a matrix difference equation constraint involving
only the covariance matrices of the state and the gain matrices of the feedback
control. Then we apply the deterministic maximum principle [4]. This approach
also gives a nice interpretation to the solution of the GDRE, which is nothing but
the matrix Lagrangian multiplier (see the proof of Theorem 3.1 below).
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LEMMA 3.1. Let matrices L,M and N be given with appropriate sizes. Then the
following matrix equation

LXM = N, (8)

has a solution X if and only if

LL†NMM† = N. (9)

Moreover, any solution to (8) is represented by

X = L†NM† + Y − L†LYMM†, (10)

where Y is a matrix with an appropriate size.

THEOREM 3.1. If the LQ problem (1)-(3) is attainable by a feedback control law

ui = Kixi, for i = 1, . . . , N − 1, (11)

where K0, . . . , KN are constant deterministic matrices, then the GDRE (6) has a
solution.

Proof. The first step is to formulate the LQ problem in terms of the state cov-
ariance matrices Xi = E[xix′

i] and the gain matrices Ki . By a simple calculation it
can be seen that the following deterministic optimal control problem is equivalent
to the original problem (1)–(3) with a feedback control of the form (11):

min
K0,... ,KN−1∈Rm×n

N−1∑
i=0

Tr[(Qi +K ′
iRiKi)Xi] + Tr(QNXN),

subject to

Xi+1 = AiXiA

′
i + CiXiC

′
i + BiKiXiK

′
iB

′
i +DiKiXiK

′
iD

′
i+ AiXiK

′
iB

′
i + BiKiXiA

′
i + ρxui DiKiXiC

′
i + ρxui CiXiK

′
iD

′
i + Vi,

X0 is a given symmetric matrix.
(12)

In the above problem the matrices K0, . . . , KN−1 are viewed as the control to be
determined. Hence, as in [4] we can apply the matrix Lagrangian multiplier method
to solve the above problem. The Lagrangian function is formed as

L =
N−1∑
i=0

Hi + Tr(QNXN),

where

Hi
�=Tr[(Qi +K ′

iRiKi)Xi]
+ Tr[Pi+1

(
AiXiA

′
i + CiXiC

′
i + BiKiXiK

′
iB

′
i +DiKiXiK

′
iD

′
i

+AiXiK ′
iB

′
i+BiKiXiA

′
i+ρxui DiKiXiC

′
i+ρxui CiXiK ′

iD
′
i+Vi −Xi+1

)
],
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and the matrices P0, . . . , PN−1 are the Lagrangian multipliers. The first-order ne-
cessary conditions for optimality [4] are found to be


∂Hi

∂Ki
= 0, Pi = ∂Hi

∂Xi
, for i = 1, . . . , N − 1,

PN = QN.

The calculation of the above derivatives leads to the following equations

(Ri + B ′
iPi+1Bi +D′

iPi+1Di)Ki + B ′
iPi+1Ai + ρxui D

′
iPi+1Ci = 0, (13)

Pi = Qi + A′
iPi+1Ai + C ′

iPi+1Ci +K ′
i (Ri + B ′

iPi+1Bi +D′
iPi+1Di)Ki

+ (A′
iPi+1Bi + ρxui C

′
iPi+1Di)Ki +K ′

i (B
′
iPi+1Ai + ρxui D

′
iPi+1Ci),

PN = QN.

(14)

Now by using Lemma 3.1 we can see that the existence of a solutionK0, . . . , KN−1

to Eq. (13) is equivalent to G†
i GiHi −Hi = 0, where

Gi = Ri + B ′
iPi+1Bi +D′

iPi+1Di

Hi = B ′
iPi+1Ai + ρxui D

′
iPi+1Ci,

and the general solution is given by the following gains

Ki = −G†
i Hi + Yi −G

†
i GiYi, Yi ∈ Rm×n, for i = 1, . . . , N − 1.

Putting the above gains into (14) we obtain




Pi = A′
iPi+1Ai −H ′

iG
†Hi + C ′

iPi+1Ci +Qi,

PN = QN,

G
†
i GiHi −Hi = 0,

Hi = B ′
iPi+1Ai + ρxui D

′
iPi+1Ci,

Gi = Ri + B ′
iPi+1Bi +D′

iPi+1Di.

(15)

Notice that the above equation is exactly the GDRE without any positiveness
constraint. The proof will be complete if we show that Gi � 0, i = 0, . . . , N − 1.

Let us suppose there is Gl with an associated negative eigenvalue λ. Denote the
unitary eigenvector respect with to λ as vλ (i.e., v′

λvλ = 1 and Glvλ = λvλ). Let
δ �= 0 be an arbitrary scalar and construct a control sequence as follows

ũi =
{

−G†
i Hixi, i �= l,

δ|λ|− 1
2 vλ −G

†
i Hixi, i = l.
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The associated cost is

J (x0, ũ0, . . . , ũN−1)

= E
N−1∑
i=0

[(ũi +G
†
i Hixi)

′Gi(ũi +G
†
i Hixi)] +

N−1∑
i=0

Tr(ViPi+1)+ E[x′
0P0x0]

=
(

δ

|λ| 1
2

vλ

)′
Gl

(
δ

|λ| 1
2

vλ

)
+

N−1∑
i=0

Tr(ViPi+1)+ E[x′
0P0x0]

= −δ2 +
N−1∑
i=0

Tr(ViPi+1)+ E[x′
0P0x0].

Obviously, as δ → ∞, J (x0, ũ0, . . . , ũN−1) → −∞ which contradicts the as-
sumption of the theorem. �

4. Well-posedness and attainability

In this section, the connection between the well-posedness and attainability of the
LQ problem is examined. It turns out, rather surprisingly, that when the optimal
cost value is finite the LQ problem is always achievable by an optimal control.
To this end, we first establish the link between the well-posedness and some LMI
condition, and then prove that the LMI condition is equivalent to the the solvability
of the GDRE as well as to the attainability of the LQ problem.

4.1. AN LMI CONDITION

The following result formulates the well-posedness as the feasibility of some LMI
involving unknown symmetric matrices. In fact, here we only show that the pro-
posed LMI condition is sufficient for the well-posedness. The necessity will be
shown later.

THEOREM 4.1. The LQ problem (1)-(3) is well-posed if there exist symmetric
matrices P0, . . . , PN satisfying the following LMI condition[
A′
iPi+1Ai − Pi + C ′

iPi+1Ci +Qi A′
iPi+1Bi + ρxui C

′
iPi+1Di

B ′
iPi+1Ai + ρxui D

′
iPi+1Ci Ri + B ′

iPi+1Bi +D′
iPi+1Di

]
� 0,

for i = 0, . . . , N − 1, and PN � QN.

(16)

Proof. Let P1, . . . , PN satisfy (16). Then by adding the following trivial equal-
ity

N−1∑
i=0

(x′
i+1Pi+1xi+1 − x′

iPixi) = E[x′
NPNxN − x′

0P0x0] (17)
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to the cost function

J (x0, u0, . . . , uN−1) = E[
N−1∑
i=0

(x′
iQixi + u′

iRiui)+ x′
NQNxN ],

and using the system Eq. (1), we can rewrite the cost function as follows

J (x0, u0, . . . , uN−1)

= E
N−1∑
i=0

(x′
iQixi + u′

iRiui + x′
i+1Pi+1xi+1 − x′

iPixi )] + E[x′
N(QN − PN)xN + x′

0P0x0]

= E
N−1∑
i=0

[x′
i (Qi − Pi + A′

iPi+1Ai + C′
iPi+1Ci)xi + 2x′

i (A
′
iPi+1Bi + ρxui C′

iPi+1Di)ui

+ u′
i (Ri + B ′

iPi+1Bi +D′
iPi+1Di)ui ] + E

N−1∑
i=0

w′
iPi+1wi

+ E[x′
N(QN − PN)xN + x′

0P0x0]

= E
N−1∑
i=0

[
xi
ui

]′ [
A′
iPi+1Ai + C′

iPi+1Ci +Qi − Pi A′
iPi+1Bi + ρxui C′

iPi+1Di
B ′
i
Pi+1Ai + ρxu

i
D′
i
Pi+1Ci Ri + B ′

i
Pi+1Bi +D′

i
Pi+1Di

] [
xi
ui

]

+
N−1∑
i=0

Tr(ViPi+1)+ E[x′
N(QN − PN)xN + x′

0P0x0].

From the above equality we can easily deduce that the cost function is bounded
from below by E[x′

0P0x0] +∑N−1
i=0 Tr(ViPi+1) and hence the LQ problem (1)-(3)

is well-posed. �
REMARK 4.1. We have shown in the proof of Theorem 4.1 that any symmetric
matrices P0, . . . , PN satisfying condition (16) provide a lower bound, E(x′

0P0x0)+∑N−1
i=0 Tr(ViPi+1), for the optimal cost value. In the next subsection, we will see

that this lower bound becomes the exact optimal cost value when P0, . . . , PN solve
the GDRE.

4.2. EQUIVALENCE BETWEEN WELL-POSEDNESS AND ATTAINABILITY

In the preceding subsection we have shown that if the LMI condition (16) is sat-
isfied then the well-posedness of the LQ problem holds. In this subsection we
not only prove the reverse implication but also show that the well-posedness, the
attainability, the LMI condition, and the solvability of the GDRE are equivalent to
each other.

The following lemmas are useful in our analysis.
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LEMMA 4.1 (Extended Schur’s lemma [3]). Let be given matrices F = F ′,H
and G = G′ with appropriate sizes. Then the following conditions are equiva-
lent:

(i) F −HG†H ′ � 0,G � 0, and H(I −GG†) = 0.

(ii)

[
F H

H ′ G

]
� 0.

(iii)

[
G H ′
H F

]
� 0.

LEMMA 4.2. Let be given matrices G = G′ and H with appropriate sizes. Then
the following conditions are equivalent

(i) H(I −GG†) = 0.
(ii) Ker(G) ⊆ Ker(H).
Proof. The implication (i) ⇒ (ii) is trivial. On the other hand, the reverse

implication can be shown by using the singular value decomposition ofG (see [8]):

G = V

[
. 0
0 0

]
V ′,

where . is a nonsingular diagonal matrix and V a matrix such that VV ′ = I .
Moreover, V is decomposed as V = [V1 V2] where the columns of the matrix V2

form a basis of kerG. Now, one can deduce straightforwardly that G+ is given by

G+ = V

[
.−1 0

0 0

]
V ′.

A simple calculation yields H(I − GG†) = HV2V
′

2. Since GV2 = 0 we have
HV2 = 0 and the proof is complete. �
LEMMA 4.3. Let be given matrices F = F ′,H and G = G′ with appropriate
sizes. Consider the following quadratic form

q(x, u) = E[x′Fx + 2x′Hu+ u′Gu],
where x and u are random variables defined on a probability space (�,B,P).
Then the following conditions are equivalent:

(i) inf
u
q(x, u) > −∞ for any random variable x.

(ii) There exists a symmetric matrix S = S ′ such that inf
u
q(x, u) = E[x′Sx],

for any random variable x.
(iii) G � 0 and H(I −GG†) = 0.
(iv) G � 0 and Ker(G) ⊆ Ker(H).

(v) There exists a symmetric matrix T = T ′ such that

[
F − T H

H ′ G

]
� 0.
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Moreover, if any of the above condition holds, then (ii) is satisfied by S = F −
HG†H ′. In addition, S � T for any T satisfying (v). Finally, for any random
variable x, the random variable u∗ = −G†H ′x is optimal with the following
optimal value

q(x, u∗) = E[x′(F −HG†H ′)x].
Proof. The required equivalences are proved by the following loop:

(i) ⇒ (iv) ⇔ (iii) ⇒ (ii) ⇒ (v) ⇒ (i).

First note that the equivalence (iv) ⇔ (iii) is nothing than the result given by
Lemma 4.2.
(i) ⇒ (iv): Assume that there exists v such that v′Gv < 0. Then for an arbit-
rary scalar α > 0 we have lim

α→+∞ q(x, αv) = −∞. By assumption this leads to

contradiction. Hence G must be positive.
Suppose now that Ker(G) �⊆ Ker(H). In other words there exists u such that

Gu = 0 and Hu �= 0. Take any arbitrary scalar α > 0 then it is immediate that
lim

α→+∞ q(Hu,−αu) = −∞ which contradicts (i).

(iii) ⇒ (ii): A simple calculation gives

q(x, u) = E[x′(F −HG†H ′)x + (u′ + x′HG†)G(u+G†H ′x)].
Define S = F −HG†H ′, then it is easily seen that inf

u
q(x, u) = E[x′Sx] for any

random variable x.
(ii) ⇒ (v): We have for any random variables x, u:

q(x, u) = E[x′Fx + 2x′Hu+ u′Gu] � E[x′Sx],
or equivalently

E
[
x

u

]′ [
F − S H

H ′ G

][
x

u

]
� 0.

Thus (v) holds with T = S.
(v) ⇒ (i): trivial.

The rest of the proof is straightforward. �
The following provides a connection between the well-posedness of the LQ

problem and the solvability of the GDRE.

THEOREM 4.2. The LQ problem (1)-(3) is well-posed if and only if there exist
symmetric matrices P0, . . . , PN satisfying the GDRE (6). Furthermore the optimal
cost is given by

inf
u0,...,uN−1

J (x0, u0, . . . , uN−1) =
N−1∑
i=0

Tr(ViPi+1)+ E[x′
0P0x0]. (18)



DISCRETE-TIME INDEFINITE LQ CONTROL 255

Proof. We prove the first assertion by induction. To this end consider the cost-
to-go from l to N

V l(xl) = inf
ul,... ,uN−1

E

[
N−1∑
i=l
(x′
iQixi + u′

iRiui)+ x′
NQNxN

]
. (19)

Note that by the stochastic optimality principle when V l1(xl1) is finite then
V l2(xl2) is also finite for any l1 � l2. This fact will be used at each step of the
induction: since the LQ problem is assumed to be well-posed at the initial (zero)
time, the cost-to-go V l(xl) is finite at any stage 0 � l � N − 1.

Now let us start with l = N−1 and define PN = QN . Then by using the system
equation (1) and (19) we have

V N−1(xN−1)− Tr(VN−1PN)

= inf
uN−1

E[x′
N−1QN−1xN−1 + u′

N−1RN−1uN−1 + x′
NQNxN ] − Tr(VN−1PN)

= inf
uN−1

E[x′
N−1(QN−1 + A′

N−1QNAN−1 + C ′
N−1QNCN−1)xN−1

+ 2x′
N−1(A

′
N−1QNBN−1 + ρxuN−1C

′
N−1QNDN−1)uN−1

+ u′
N−1(RN + B ′

N−1QNBN−1 +D′
N−1QNDN−1)uN−1].

Since V N−1(xN−1) is finite, using Lemma 4.3 we can guarantees the existence of a
symmetric matrix PN−1 such that

V N−1(xN−1)− Tr(VN−1PN) = E[x′
N−1PN−1xN−1].

Also by Lemma 4.3 we have the following conditions which are nothing else than
the GDRE (6) for i = N − 1:

PN−1 = A′
N−1PNAN−1 −H ′

N−1G
†
N−1HN−1 + C ′

N−1Pi+1CN−1 +QN−1,

GN−1 = RN−1 + B ′
N−1PNBN−1 +D′

N−1PNDN−1 � 0,

HN−1 = B ′
N−1PNAN−1 + ρxuN−1D

′
N−1PNCN−1.

Now suppose that we have found a sequence of symmetric matrices Pl, . . . , PN−1

which solve the GDRE (6) for i = N − 1, . . . , l, and satisfy

V l(xl)−
N−1∑
i=l

Tr(ViPi+1) = E(x′
lPlxl).
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Then by the stochastic optimality principle the following is derived:

V l−1(xl−1)−
N−1∑
i=l−1

Tr(ViPi+1)

= inf
ul−1

E[x′
l−1Ql−1xl−1 + u′

l−1Rl−1ul−1 + V l(xl)] −
N−1∑
i=l−1

Tr(ViPi+1)

= inf
ul−1

E(x′
l−1Ql−1xl−1 + u′

l−1Rl−1ul−1 + x′
lPlxl)− Tr(Vl−1Pl)

= inf
ul−1

E[x′
l−1(Ql−1 + A′

l−1PlAl−1 + C ′
l−1PlCl−1)xl−1

+ 2x′
l−1(A

′
l−1PlBl−1 + ρxul−1C

′
l−1QlDl−1)ul−1

+ u′
l−1(Rl + B ′

l−1PlBl−1 +D′
l−1PlDl−1)ul−1].

As in the preceding we can see that Lemma 4.3 provides the following necessary
and sufficient conditions for the finiteness of V l−1(xl−1):


Pl−1 = A′

l−1PlAl−1 −H ′
l−1G

†
l−1Hl−1 +Ql−1 + C ′

l−1PlCl−1,

Gl−1 = Rl−1 + B ′
l−1PlBl−1 +D′

l−1PlDl−1 � 0,
Gl−1G

†
l−1Hl−1 −Hl−1 = 0,

Hl−1 = B ′
l−1PlAl−1 + ρxul−1D

′
l−1PlCl−1.

In addition,

V l−1(xl−1) =
N−1∑
i=l−1

Tr(ViPi+1)+ x′
l−1Pl−1xl−1.

These prove the first assertion. Next, noticing that by Lemma 4.1 the solution to
the GDRE satisfies also the LMI condition (16) which by Theorem 4.1 implies the
well-posedness of the LQ problem. �

The main result of this section is given by the following.

THEOREM 4.3. The following are equivalent
(i) The LQ problem is well-posed.
(ii) The LQ problem is attainable.
(iii) The LMI condition (16) is feasible.
(iv) The GDRE (6) is solvable.

Moreover, when any of the above conditions is satisfied the LQ problem is attain-
able by

ui = − [Ri + B ′
iPi+1Bi +D′

iPi+1Di]†[B ′
iPi+1Ai

+ ρxui D
′
iPi+1Ci]xi, i = 0, . . . , N − 1,

(20)

where P0, . . . , PN are solutions to the GDRE (6).
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Proof. By Theorem 4.1 and Theorem 4.2 the equivalences (i) ⇔ (iii) ⇔ (iv)

are straightforward. What remains to show is that the LQ problem is attainable by
the feedback control law (20). To this end, let P1, . . . , PN solve the GDRE (6).
Then by adding the equality

N−1∑
i=0

(x′
i+1Pi+1xi+1 − x′

iPixi) = E[x′
NPNxN − x′

0P0x0]

to the performance index we have

J (x0, u0, . . . , uN−1)

= E
N−1∑
i=0

[x′
i (Qi − Pi + A′

iPi+1Ai + C ′
iPi+1Ci)xi

+ 2x′
i (A

′
iPi+1Bi + ρxui C

′
iPi+1Di)ui

+ u′
i(Ri + B ′

iPi+1Bi +D′
iPi+1Di)ui] + E

N−1∑
i=0

w′
iPi+1wi + E[x′

0P0x0].

A completion of square yields

J (x0, u0, . . . , uN−1)

= E
N−1∑
i=0

[(ui +G
†
i Hixi)

′Gi(ui +G
†
i Hixi)]

+
N−1∑
i=0

Tr(ViPi+1)+ E[x′
0P0x0],

which shows that the optimal value equals
∑N−1

i=0 Tr(ViPi+1)+ E[x′
0P0x0] and it is

attainable by the feedback ui = −G†
i Hixi for i = 1, . . . , N − 1. �

REMARK 4.2. Suppose that there exist Q0, . . . ,QN and R0, . . . , RN−1 such
that the LQ problem is attainable. Then it is easily verified that for every Q̃0 �
Q0, . . . , Q̃N � QN and R̃0 � R0, . . . , R̃N−1 � RN−1, the LMI condition (16)
is also satisfied. Therefore, any of the statements in Theorem 4.3 holds for every
Q̃0 � Q0, . . . , Q̃N � QN and R̃0 � R0, . . . , R̃N−1 � RN−1.

REMARK 4.3. It should be noted that the GDRE solution is also the unique
solution to the following semidefinite programming (SDP) [14]

min
P0,...,PN−1

−Tr
N∑
0

Pi subject to the LMI condition (16).
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This fact is an immediate consequence of our previous results. However, it seems
that solving the above SDP is computationally unfavorable since the GDRE solu-
tion can be found by a simple backward calculation.

5. Optimal synthesis via GDRE

It is well-known that for a definite LQ problem the optimal control is always unique
and has a feedback form with deterministic gain given by the solution to the differ-
ence Riccati equation. For the indefinite case this is no longer true. In the following
we provide a complete characterization of all optimal controls. Precisely, we show
that any optimal control can be expressed in terms of the solution to the GDRE
with two degrees of freedom. In general the optimal control involves a feedback
form with random gains and an additional random term.

The following is the main result of this section.

THEOREM 5.1. Assume that the GDRE (6) admits a solution. Then the set of all
optimal controls is determined by the following (parameterized by Yi, zi):

u
(Yi ,zi )
i = −(G†

i Hi + Yi −G
†
i GiYi)xi + zi −G

†
i Gizi, (21)

where Yi ∈ Rm×n and zi ∈ Rm are arbitrary random variables defined on the
probability space (�,B,P). Furthermore, the optimal cost value is uniquely given
by

inf
u0,... ,uN−1

J (x0, u0, . . . , uN−1) =
N−1∑
i=0

Tr(ViPi+1)+ E[x′
0P0x0], (22)

where P0, . . . , PN−1 solve the GDRE.
Proof. We show first that any control law of the form (21) is optimal. Let

P0, . . . , PN−1 solve GDRE (6). By the same calculation used in our previous
proofs the cost function can be expressed as follows

J (x0, u0, . . . , uN−1)

= E
N−1∑
i=0

(x′
iQixi+u′

iRiui+x′
i+1Pi+1xi+1 − x′

iPixi)+E[x′
0P0x0]

= E[
N−1∑
i=0

x′
i(Qi − Pi+A′

iPi+1Ai+C ′
iPi+1Ci)xi+2x′

i (A
′
iPi+1Bi+ρxui C ′

iPi+1Di)ui

+ u′
i (Ri+B ′

iPi+1Bi+D′
iPi+1Di)ui]+E

N−1∑
i=0

w′
iPi+1wi+E[x′

0P0x0],

= E
N−1∑
i=0

[x′
iH

′
iG

†
i Hixi+2x′

iH
′
i ui+u′

iGiui]+
N−1∑
i=0

Tr(ViPi+1)+ E[x′
0P0x0].



DISCRETE-TIME INDEFINITE LQ CONTROL 259

Denote M1
i = −(Yi −G

†
i GiYi) and M2

i = −(zi −G
†
i Gizi). Then we have

GiM
1
i = 0, GiM

2
i = 0. (23)

Thus, using the last expression of J (x0, u0, . . . , uN−1) given above and the equa-
tion (23) we have the following

J (x0, u0, . . . , uN−1)

=
N−1∑
i=0

Tr(ViPi+1)+ E[x′
0P0x0]

+E
N−1∑
i=0

(ui + (G
†
i Hi +M1

i )xi +M2
i )

′Gi(ui + (G
†
i Hi +M1

i )xi +M2
i ).

(24)

Since by definition Gi � 0 for i = 1, . . . , N − 1, we conclude that the control
sequence ui = −[(G†

i Hi +M1
i )xi +M2

i ], i = 0, . . . , N − 1, minimizes J with the
optimal value given by (22).

Next, consider any control sequence ū0, . . . , ūN−1 which minimizes the cost
function J . Then we have

J (x0, ū0, . . . , ūN−1)

= E
N−1∑
i=0

[(ūi +G
†
i Hixi)

′Gi(ūi +G
†
i Hixi)] +

N−1∑
i=0

Tr(ViPi+1)+ E[x′
0P0x0]

=
N−1∑
i=0

Tr(ViPi+1)+ E[x′
0P0x0].

Necessarily, the above equality implies

E
N−1∑
i=0

[(ūi +G
†
i Hixi)

′Gi(ūi +G
†
i Hixi)] = 0.

As Gi � 0 for i = 1, . . . , N − 1, we have the following equivalent condition

Gi(ūi +G
†
i Hixi) = 0, i = 1, . . . , N − 1.

Hence each ūi solves the following equation

Giūi +GiG
†
i Hixi = 0.

Using Lemma 3.1 with L = Gi , M = I , N = −GiG
†
i Hixi , we have the following

solution

ūi = −G†
i Hixi + zi −G

†
i Gizi.
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Thus ūi is represented by (21). �
In the following we present some special cases of the previous result. The first

one is when the LQ problem is attainable by a unique optimal control. The second
one is that the cost function has a constant value with any control sequence.

COROLLARY 5.1. The LQ problem is uniquely solvable if and only if Gi > 0,
for i = 0, . . . , N − 1. Moreover, the unique optimal control is given by

ui = −G−1
i Hixi, i = 0, . . . , N − 1.

COROLLARY 5.2. If Gi = 0, i = 0, . . . , N − 1, then any admissible control is
optimal and the GDRE reduces to the following linear system:


Pi − A′

iPi+1Ai − C ′
iPi+1Ci −Qi = 0,

PN = QN,

B ′
iPi+1Ai + ρxui D

′
iPi+1Ci = 0,

Ri + B ′
iPi+1Bi +D′

iPi+1Di = 0, for i = 0, . . . , N − 1.

(25)

6. Extensions

So far we have assumed that E[wiwxi ] = E[wiwui ] = 0. Here we show how to treat
the case when the noises wxi and wui are correlated with the additive noise wi . In
this situation, the optimal control requires an additional input term.

We provide in the following the optimal solution to the LQ problem in the case
when E[wiwxi ] = ρxi �= 0, and E[wiwui ] = ρui �= 0.

THEOREM 6.1. Assume that the GDRE [6] is solvable. Then the LQ problem
(1)–(3) with ρxi �= 0, ρui �= 0 is attainable by an optimal control in the following
form:

ūi = −G†
i (Hixi + ψi), i = 0, . . . , N − 1, (26)

where

ψi = D′
iPi+1ρ

u
i + B ′

iφi+1, (27)

P0, . . . , PN−1 solve GDRE (6) (Gi,Hi are defined as in (6)), and φi satisfies the
following equation


φi = (A′

i −H ′
iG

†
i B

′
i)φi+1 + C ′

iPi+1ρ
x
i −H ′

iG
†
i D

′
iρ
u
i ,

GiG
†
i (D

′
iPi+1ρ

u
i + B ′

iφi+1)−D′
iPi+1ρ

u
i + B ′

iφi+1 = 0,
φN = 0,

(28)

or equivalently

φi = A′

iφi+1 + C ′
iPi+1ρ

x
i −H ′

iG
†
i ψi,

GiG
†
i ψi − ψi = 0,

φN = 0.
(29)
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Moreover, the optimal cost value is given by

inf
u0,... ,N−1

J (x0, u0, . . . , uN−1) =
N−1∑
i=0

[Tr(ViPi+1)− ψ ′
iG

†
i ψi]

+ E[x′
0P0x0 + 2x′

0φ0].
(30)

Proof. First note that

E(xi+1) = E(Aixi + Biui) and E[−x′
0φ0] = E

N−1∑
i=0

(x′
i+1 φi+1 − x′

iφi).

By (1),(6),(17) and (29), we have

E[x′
NPNxN − x′

0P0x0] =E
N−1∑
i=0

[x′
i (H

′
iG

†
i Hi −Qi)xi + u′

i (Gi − Ri)ui

+ 2x′
iH

′
i ui + 2x′

iC
′
iPi+1ρ

x
i + 2u′

iD
′
iPi+1ρ

u
i ]

+
N−1∑
i=0

Tr(ViPi+1),

and

E[−x′
0φ0] = E

N−1∑
i=0

[x′
i (H

′
iG

†
i ψi − C ′

iPi+1ρ
x
i )+ u′

iB
′
iφi+1].

Hence, we have the following

J (x0, u0, . . . , N − 1)− E[x′
0P0x0 − 2x′

0φ0]

= E
N−1∑
i=0

[x′
i (H

′
iG

†
i Hi)xi + u′

iGiui + 2x′
iH

′
i ui + 2x′

iH
′
iG

†
i ψi + 2u′

iψi]

+
N−1∑
i=0

Tr(ViPi+1)

= E
N−1∑
i=0

[(ui +G
†
i (Hixi + ψi))

′Gi(ui +G
†
i (Hixi + ψi))− ψ ′

iG
†
i ψi]

+
N−1∑
i=0

Tr(ViPi+1).

Finally, using (26) we see that

J (x0, ū0, . . . , ūN−1) =
N−1∑
i=0

[Tr(ViPi+1)− ψ ′
iG

†
i ψi] + E[x′

0P0x0 + 2φ′
0x0].
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Therefore ū0, . . . , ūN−1 is an optimal control. �
REMARK 6.1. As in Theorem 5.1, the general form of the optimal control law
involves two degrees of freedom Yi, zi . The set of optimal controls is given by

ū
(Yi ,zi )
i = −(G†

i Hi + Yi −G
†
i GiYi)xi −G

†
i ψi + zi −G

†
i Gizi, (31)

where Yi ∈ Rm×n and zi ∈ Rm are arbitrary random variables.

7. A numerical example

The theoretical results obtained show that the solvability of GDRE (6) is equiv-
alent to the existence of optimal solution to the LQ problem (1)–(2). Moreover,
based on GDRE (6), we can obtain an optimal control with limited calculation.
The following numerical example illustrates the procedure of finding the optimal
solution.

Consider a three-stage system (1)–(2) with initial state

x1 =
(

0.4692
−0.2591

)
.

The coefficients of the dynamics are as follows

A1 =
(

0.9501 −0.6068
0.2311 0.4860

)
, A2 =

(
0.8913 −0.4565
0.7621 0.0185

)
,

A3 =
(

0.8214 −0.6154
0.4447 0.7919

)
,

B1 =
(

0.6979
0.3784

)
, B2 =

(
0.8600
0.8537

)
, B3 =

(
0.5936
0.4966

)
,

C1 =
( −0.5681 0.7027

0.3704 0.5466

)
, C2 =

( −0.4449 0.6213
0.6946 0.7948

)
,

C3 =
( −0.9568 0.8801

0.5226 0.1730

)
,

D1 =
(

0.8998
−0.8216

)
, D2 =

(
0.6449
−0.8180

)
, D3 =

(
0.6602
−0.3420

)
.

The parameters on the random factors are

ρxu1 = −0.2742, ρxu2 = 0.5690, ρxu3 = 0.5803,

V1 =
(

0.9883 0.5031
0.5031 0.5155

)
, V2 =

(
0.3340 −0.3294

−0.3294 0.5798

)
,
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V3 =
(

0.5678 0.4267
0.4267 0.6029

)
.

Finally, the state and control weights are the following

Q1 =
( −0.5000 0

0 0.2000

)
, Q2 =

( −0.6000 0
0 −0.6000

)
,

Q3 =
(

0.8000 0
0 0.5000

)
, Q4 =

(
1.0000 0

0 0.5000

)
,

R1 = −0.9797, R2 = −0.4072, R3 = −0.2523.

Note that in this example, all the control weights Ri are negative, while some
of the state weights Qi are indefinite. We solve the corresponding GDRE of this
problem stage by stage and construct the optimal feedback control law Ki . Finally,
we can calculate the optimal cost value.

Specifically, for GDRE (6), the terminal condition is P4 = Q4.
Stage 3:
G3 = R3 + B ′

3P4B3 +D′
3P4D3 = 0.7176,

G
†
3 = G−1

3 = 1.3935,
H3 = (0.1795, 0.1514),

P3 =
(

2.5808 −1.1643
−1.1643 1.9500

)
.

The optimal feedback control gain is K3 = −G†
3H3 = (−0.2502,−0.2109).

Stage 2:
G2 = 4.8196,
G

†
2 = G−1

2 = 0.2075,
H2 = (0.0085,−0.6830),

P2 =
(

3.1721 −0.3630
−0.3630 0.9395

)
.

The optimal feedback control gain is K2 = (−0.0018, 0.1417).
Stage 1:
G1 = 4.2472,
G

†
1 = G−1

1 = 0.2355,
H1 = (2.5990,−1.6532),

P1 =
(

1.9692 −1.8864
−1.8864 2.7290

)
.

The optimal feedback control gain is K1 = (−0.6119, 0.3892). Finally, the
optimal cost value is

J (x1) = x′
1P1x1 +

3∑
i=1

Tr(ViPi+1) = 7.9585.
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8. Conclusion

In this paper we have investigated the discrete-time stochastic indefinite LQ prob-
lem in a general setting, allowing the weighting matrices in the cost function to be
indefinite. The underlying system is subject to external perturbations which affect
multiplicatively and additively the parameters of the model in both the state and
the controls. We have introduced a new Riccati-type equation which plays a central
role in solving the indefinite LQ problem. At the same time we have introduced an
LMI condition which turns out to be necessary and sufficient for the solvability of
our the Riccati equation. More precisely, we have shown that the well-posedness,
the attainability of the LQ problem, the feasibility of the LMI and the solvability
of the Riccati equation are equivalent to each other. Also, we have provided a
complete characterization of all optimal controls.
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